GaAs-based nanomaterials are essential for near-infrared nano-photoelectronic devices due to their exceptional optoelectronic properties.However,as the dimensions of GaAs materials decrease,the development of GaAs nan...GaAs-based nanomaterials are essential for near-infrared nano-photoelectronic devices due to their exceptional optoelectronic properties.However,as the dimensions of GaAs materials decrease,the development of GaAs nanowires(NWs)is hindered by type-Ⅱquantum well structures arising from the mixture of zinc blende(ZB)and wurtzite(WZ)phases and surface defects due to the large surface-to-volume ratio.Achieving GaAs-based NWs with high emission efficiency has become a key research focus.In this study,pre-etched silicon substrates were combined with GaAs/AlGaAs core-shell heterostructure to achieve GaAs-based NWs with good perpendicularity,excellent crystal structures,and high emission efficiency by leveraging the shadowing effect and surface passivation.The primary evidence for this includes the prominent free-exciton emission in the variable-temperature spectra and the low thermal activation energy indicated by the variable-power spectra.The findings of this study suggest that the growth method described herein can be employed to enhance the crystal structure and optical properties of otherⅢ-Ⅴlow-dimensional materials,potentially paving the way for future NW devices.展开更多
The contribution to the critical shear stress of nanocomposites caused by the interaction between screw dislocations and core-shell nanowires (coated nanowires) with interface stresses was derived by means of the MOTT...The contribution to the critical shear stress of nanocomposites caused by the interaction between screw dislocations and core-shell nanowires (coated nanowires) with interface stresses was derived by means of the MOTT and NABARRO's model. The influence of interface stresses on the critical shear stress was examined. The result indicates that, if the volume fraction of the core-shell nanowires keeps a constant, an optimal critical shear stress may be obtained when the radius of the nanowire with interface stresses reaches a critical value, which differs from the classical solution without considering the interface stresses under the same external conditions. In addition, the material may be strengthened by the soft nanowires when the interface stresses are considered. There also exist critical values of the elastic modulus and the thickness of surface coating to alter the strengthening effect produced by it.展开更多
文摘GaAs-based nanomaterials are essential for near-infrared nano-photoelectronic devices due to their exceptional optoelectronic properties.However,as the dimensions of GaAs materials decrease,the development of GaAs nanowires(NWs)is hindered by type-Ⅱquantum well structures arising from the mixture of zinc blende(ZB)and wurtzite(WZ)phases and surface defects due to the large surface-to-volume ratio.Achieving GaAs-based NWs with high emission efficiency has become a key research focus.In this study,pre-etched silicon substrates were combined with GaAs/AlGaAs core-shell heterostructure to achieve GaAs-based NWs with good perpendicularity,excellent crystal structures,and high emission efficiency by leveraging the shadowing effect and surface passivation.The primary evidence for this includes the prominent free-exciton emission in the variable-temperature spectra and the low thermal activation energy indicated by the variable-power spectra.The findings of this study suggest that the growth method described herein can be employed to enhance the crystal structure and optical properties of otherⅢ-Ⅴlow-dimensional materials,potentially paving the way for future NW devices.
基金Projects(50801025, 50634060 ) supported by the National Natural Science Foundation of China
文摘The contribution to the critical shear stress of nanocomposites caused by the interaction between screw dislocations and core-shell nanowires (coated nanowires) with interface stresses was derived by means of the MOTT and NABARRO's model. The influence of interface stresses on the critical shear stress was examined. The result indicates that, if the volume fraction of the core-shell nanowires keeps a constant, an optimal critical shear stress may be obtained when the radius of the nanowire with interface stresses reaches a critical value, which differs from the classical solution without considering the interface stresses under the same external conditions. In addition, the material may be strengthened by the soft nanowires when the interface stresses are considered. There also exist critical values of the elastic modulus and the thickness of surface coating to alter the strengthening effect produced by it.