期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于核的可能性聚类算法 被引量:8
1
作者 吕佳 熊忠阳 《计算机工程与设计》 CSCD 北大核心 2006年第13期2466-2468,共3页
针对模糊C-均值算法聚类分析时的缺陷,采用能够较好地处理噪音和孤立点的可能性聚类算法,并将核学习方法的思想应用于可能性聚类算法中,提出一种基于核的可能性聚类算法。该方法利用Mercer核将观察空间的待分类样本点经过一个非线性映射... 针对模糊C-均值算法聚类分析时的缺陷,采用能够较好地处理噪音和孤立点的可能性聚类算法,并将核学习方法的思想应用于可能性聚类算法中,提出一种基于核的可能性聚类算法。该方法利用Mercer核将观察空间的待分类样本点经过一个非线性映射后,映射到一个高维的核空间,突出不同类别样本之间的特征差异,使得原来线性不可分的样本点在核空间中变得更加线性可分,从而更好地聚类。经仿真实验表明,基于核的可能性聚类算法比模糊C-均值以及可能性聚类算法具有更好的聚类效果,且算法能够很快地收敛。 展开更多
关键词 分析 函数 模糊C-均值 可能性 基于可能性
在线阅读 下载PDF
基于动态聚类的电力变压器故障诊断 被引量:21
2
作者 熊浩 张晓星 +2 位作者 廖瑞金 常涛 孙才新 《仪器仪表学报》 EI CAS CSCD 北大核心 2007年第3期456-459,共4页
本文提出了一种新电力变压器故障诊断的动态聚类方法,以人工免疫网络对故障样本进行免疫学习和记忆,提取表征故障样本的有用特征作为核可能性聚类算法的初始聚类中心,再用遗传算法动态选取聚类个数和中心实现故障样本的分类。该诊断方... 本文提出了一种新电力变压器故障诊断的动态聚类方法,以人工免疫网络对故障样本进行免疫学习和记忆,提取表征故障样本的有用特征作为核可能性聚类算法的初始聚类中心,再用遗传算法动态选取聚类个数和中心实现故障样本的分类。该诊断方法经大量实例分析,并将其结果与BP神经网络等方法的结果相比,表明该算法具有较高的诊断精度。 展开更多
关键词 动态 人工免疫网络 核可能性聚类 遗传算法 电力变压器 故障诊断
在线阅读 下载PDF
基于多模型外部分析和Greedy-KP1M的多工况过程监控 被引量:3
3
作者 王晓阳 王昕 +1 位作者 王振雷 钱锋 《化工学报》 EI CAS CSCD 北大核心 2012年第9期2869-2876,共8页
传统的基于多元统计过程监控方法都是假设过程处于单一工况下,而随着进料负荷、产品组分等过程参数的改变,生产过程的工况也随之改变,传统方法便不再适用。针对工业过程中的多工况监控问题,提出了一种基于多模型外部分析和Greedy-KP1M... 传统的基于多元统计过程监控方法都是假设过程处于单一工况下,而随着进料负荷、产品组分等过程参数的改变,生产过程的工况也随之改变,传统方法便不再适用。针对工业过程中的多工况监控问题,提出了一种基于多模型外部分析和Greedy-KP1M的多工况过程监控方法。首先针对传统外部分析方法描述能力不足的问题,用多模型局部建模代替单一模型来获得更好的描述能力,同时获得监控残差,通过对残差进行监控从而去除多工况的影响,进而将核单簇可能性聚类(KP1M)用于对残差的监控上。该方法拥有和支持向量数据描述(SVDD)相当的监控效果,但计算复杂度却远远小于SVDD。同时,采用Greedy方法提取特征样本,进一步降低了算法计算复杂度。最后将上述方法应用在TE模型和乙烯裂解炉的监控上,结果证明了该方法的有效性。 展开更多
关键词 多工况 多模型外部分析 Greedy特征样本提取 单簇可能性
在线阅读 下载PDF
一种鲁棒非平衡极速学习机算法 被引量:2
4
作者 孟凡荣 高春晓 刘兵 《计算机应用研究》 CSCD 北大核心 2014年第4期985-988,1004,共5页
极速学习机(ELM)算法只对平衡数据集分类较好,对于非平衡数据集,它通常偏向多数样本类,对于少数样本类性能较低。针对这一问题,提出了一种处理不平衡数据集分类的ELM模型(ELM-CIL),该模型按照代价敏感学习的原则为少数类样本赋予较大的... 极速学习机(ELM)算法只对平衡数据集分类较好,对于非平衡数据集,它通常偏向多数样本类,对于少数样本类性能较低。针对这一问题,提出了一种处理不平衡数据集分类的ELM模型(ELM-CIL),该模型按照代价敏感学习的原则为少数类样本赋予较大的惩罚系数,并引入模糊隶属度值减小了外围噪声点的影响。实验表明,提出的方法不仅对提高不平衡数据集中少数类的分类精度效果较明显,而且提高了对噪声的鲁棒性。 展开更多
关键词 极速学习机 不平衡数据集 基于可能性模糊C-均值 神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部