锂电池健康状态(state of health, SOH)的退化过程在一定程度上是一个非平稳随机过程,使得当前多数点估计机器学习方法在实际应用中受到限制。基于贝叶斯理论的高斯过程回归(Gaussian process regression,GPR),因可输出估计结果的不确定...锂电池健康状态(state of health, SOH)的退化过程在一定程度上是一个非平稳随机过程,使得当前多数点估计机器学习方法在实际应用中受到限制。基于贝叶斯理论的高斯过程回归(Gaussian process regression,GPR),因可输出估计结果的不确定性,近年来在锂电池SOH区间估计中得到广泛应用。然而,GPR的性能很大程度上取决于其核函数的选择,当前研究多凭借经验选用固定单一核函数,无法适应不同的数据集。为此,本文提出一种基于自适应最优组合核函数GPR的锂电池SOH区间估计方法。该方法首先从电池充放电数据中提取出多个健康因子(health factor, HF),并采用皮尔森相关系数法优选出6个与SOH高度相关的健康因子作为模型的输入。然后,在当前常用的7个核函数集合上,通过两两随机组合构造新的组合核函数,并利用交叉验证自适应优选出最优组合核函数。采用3个不同数据集对所提方法进行了验证,结果表明:本文方法具有出色的SOH区间估计性能。在3个公开数据集上,平均区间宽度指标在0.0509以内,平均区间分数大于-0.0004,均方根误差小于0.0181。展开更多
为监测分布式驱动电动汽车中轮毂电机运行状态,确保整车运行安全,提出一种基于改进的多类支持向量数据描述(multi-class support vector data description,简称MCSVDD)的轮毂电机故障诊断方法。首先,针对MCSVDD算法的改进,基于近邻传播(...为监测分布式驱动电动汽车中轮毂电机运行状态,确保整车运行安全,提出一种基于改进的多类支持向量数据描述(multi-class support vector data description,简称MCSVDD)的轮毂电机故障诊断方法。首先,针对MCSVDD算法的改进,基于近邻传播(affinity propagation,简称AP)聚类算法提出了MCSVDD以“距离类内簇中心最小”的类别判断法则,并基于Weibull函数构造了Weibull核函数,用于优化数据描述模型;其次,针对轮毂电机运行状态的多维特征参数组,提出一种基于最小距离传播鉴别投影(minimum-distance propagation discriminant projection,简称MPDP)的降维法,提高了不同工况下轮毂电机故障状态的可分性;最后,定制带有典型轴承故障的轮毂电机,采集7种工况下的振动信号,验证所提出方法的有效性。结果表明:基于MPDP降维后的轮毂电机运行状态观测样本的可分性优于线性判别分析(linear discriminant analysis,简称LDA)、局部保持投影(locality preserving projection,简称LPP)及最小距离鉴别投影(minimum-distance discriminant projection,简称MDP)方法,基于Weibull核函数的MCSVDD状态识别系统的识别精度整体高于基于多项式和高斯核函数的MCSVDD系统。展开更多
文摘锂电池健康状态(state of health, SOH)的退化过程在一定程度上是一个非平稳随机过程,使得当前多数点估计机器学习方法在实际应用中受到限制。基于贝叶斯理论的高斯过程回归(Gaussian process regression,GPR),因可输出估计结果的不确定性,近年来在锂电池SOH区间估计中得到广泛应用。然而,GPR的性能很大程度上取决于其核函数的选择,当前研究多凭借经验选用固定单一核函数,无法适应不同的数据集。为此,本文提出一种基于自适应最优组合核函数GPR的锂电池SOH区间估计方法。该方法首先从电池充放电数据中提取出多个健康因子(health factor, HF),并采用皮尔森相关系数法优选出6个与SOH高度相关的健康因子作为模型的输入。然后,在当前常用的7个核函数集合上,通过两两随机组合构造新的组合核函数,并利用交叉验证自适应优选出最优组合核函数。采用3个不同数据集对所提方法进行了验证,结果表明:本文方法具有出色的SOH区间估计性能。在3个公开数据集上,平均区间宽度指标在0.0509以内,平均区间分数大于-0.0004,均方根误差小于0.0181。
文摘为有效预测船舶油耗,提出一种基于混合核函数的船舶油耗预测模型。分别构建径向基函数(radial basis function,RBF)和多项式单核函数的支持向量回归(support vector regression,SVR)模型,并利用自适应随机搜索(adaptive random search,ARS)算法对两者进行优化。在此基础上,建立基于混合核函数ARS-SVR的船舶油耗预测模型。以一艘风帆助航的大型原油运输船(very large crude carrier,VLCC)为研究对象,基于实船监测数据开展船舶油耗预测。结果表明,与单一的RBF和多项式单核ARS-SVR相比,采用混合核函数ARS-SVR的模型的预测结果的均方根误差分别降低了19.8%和30.2%。所提出的船舶油耗预测模型可以提升风帆助航船油耗计算的准确率,有助于优化船舶能效和提升管理技术。