期刊文献+
共找到41篇文章
< 1 2 3 >
每页显示 20 50 100
基于主成分分析和K近邻的文件类型识别算法 被引量:3
1
作者 鄢梦迪 秦琳琳 吴刚 《计算机应用》 CSCD 北大核心 2016年第11期3161-3164,共4页
为解决基于文件后缀名和文件特征标识识别文件类型误判率较高的问题,在基于文件内容识别文件类型的算法基础上,提出主成分分析(PCA)和K近邻(KNN)算法相结合的文件类型识别算法。首先,使用PCA方法对样本预处理以降低样本空间的维数;然后... 为解决基于文件后缀名和文件特征标识识别文件类型误判率较高的问题,在基于文件内容识别文件类型的算法基础上,提出主成分分析(PCA)和K近邻(KNN)算法相结合的文件类型识别算法。首先,使用PCA方法对样本预处理以降低样本空间的维数;然后,对降维后的训练样本集进行聚类处理,即用聚类质心代表每种类型的文件;最后,针对训练样本分布不均匀可能造成的分类误差,提出基于距离加权的KNN算法。实验结果表明,改进算法在样本数较多的情况下,能降低分类的计算复杂度,并保持了较高的识别正确率;而且该算法不依赖文件类型的特征标识,应用范围更为广泛。 展开更多
关键词 文件类型识别 字节频率分布 成分分析 k近邻
在线阅读 下载PDF
核主成分分析与随机森林相结合的变压器故障诊断方法 被引量:50
2
作者 胡青 孙才新 +1 位作者 杜林 李剑 《高电压技术》 EI CAS CSCD 北大核心 2010年第7期1725-1729,共5页
油中溶解气体分析(dissolved gas analysis,DGA)是变压器故障诊断的重要方法。变压器故障诊断研究大多采用人工智能方法学习建立单个分类器,与单个分类器相比,分类器群能够更全面地学习样本集特性,达到更好的诊断效果。分类器间的差异... 油中溶解气体分析(dissolved gas analysis,DGA)是变压器故障诊断的重要方法。变压器故障诊断研究大多采用人工智能方法学习建立单个分类器,与单个分类器相比,分类器群能够更全面地学习样本集特性,达到更好的诊断效果。分类器间的差异性是影响群体性能的主要因素,针对DGA特征量较少训练得到的分类器差异不大的问题,提出将核主成分分析(kernel principle component analysis,KPCA)与随机森林方法相结合,KPCA将样本从低维的状态空间非线性地映射到高维的核空间,在核空间用随机森林方法训练得到分类器群。对DGA故障样本以及加噪样本的诊断实验结果表明,KPCA能够有效地提取故障特征,用核特征量建模的诊断效果优于直接采用DGA特征量,分类器群的诊断效果以及抗干扰能力均高于单个分类器。 展开更多
关键词 电力变压器 故障诊断 溶解气体分析 分类器 随机森林 成分分析
在线阅读 下载PDF
基于对称核主成分分析的人脸识别 被引量:4
3
作者 刘嵩 罗敏 张国平 《计算机应用》 CSCD 北大核心 2012年第5期1404-1406,1428,共4页
为了提高人脸识别技术的实用性,结合人脸镜像对称性和核主成分分析提出了一种新的人脸识别方法。首先利用小波变换压缩人脸图像数据,获取小波分解的低频分量,再通过镜像变换得到镜像偶对称图像和镜像奇对称图像,然后分别对奇偶对称图像... 为了提高人脸识别技术的实用性,结合人脸镜像对称性和核主成分分析提出了一种新的人脸识别方法。首先利用小波变换压缩人脸图像数据,获取小波分解的低频分量,再通过镜像变换得到镜像偶对称图像和镜像奇对称图像,然后分别对奇偶对称图像进行核主成分分析提取奇偶特征,并且通过加权因子对奇偶特征进行融合,最后采用最近邻分类器分类。基于ORL人脸数据库的实验结果表明:该算法增大了样本容量,在一定程度上克服了光照、姿态的不利因素,提高了人脸识别率。 展开更多
关键词 人脸识别 镜像对称 特征提取 成分分析 近邻分类器
在线阅读 下载PDF
主成分分析排序和模糊线性判别分析的生菜近红外光谱分类 被引量:5
4
作者 武斌 沈嘉棋 +2 位作者 汪鑫 武小红 侯晓蕾 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2022年第10期3079-3083,共5页
贮存时间是影响生菜品质的一项重要因素,传统的贮存时间鉴别方法主要依靠人工经验,但是这种方法的准确率和可信度并不高。研究的目标是建立一种基于模糊识别的模型进行生菜光谱分析以实现生菜贮存时间的鉴别,并与其他鉴别方法作比较。为... 贮存时间是影响生菜品质的一项重要因素,传统的贮存时间鉴别方法主要依靠人工经验,但是这种方法的准确率和可信度并不高。研究的目标是建立一种基于模糊识别的模型进行生菜光谱分析以实现生菜贮存时间的鉴别,并与其他鉴别方法作比较。为此,在当地超市购买60份新鲜生菜样品,存放于冰箱中待用。首先,通过AntarisⅡ近红外光谱检测仪采集生菜样品的近红外光谱数据,每隔12小时检测一次,每个样本检测重复三次,并取三次平均值作为实验数据。其次,利用多元散射校正(MSC)减少近红外光谱中的冗余信息。为了进一步去除近红外光谱中的无用信息以及简化随后的数据分类过程,分别运用主成分分析(PCA)和排序主成分分析(PCA Sort)。其中,PCA Sort通过改进对主成分的排序方法能提高分类准确率,同时便于模糊线性鉴别分析(FLDA)进一步提取特征。PCA和PCA Sort的计算仅运用了前15个主成分(能充分反映光谱的主要信息)。最后,利用模糊线性鉴别分析算法(FLDA)和K近邻算法(KNN)进一步分类所得的低维数据。基于PCA和KNN算法的模型鉴别准确率达到43%,而基于PCA,FLDA和KNN算法的模型鉴别准确率可达83%。上述结果说明基于PCA,FLDA和KNN算法的模型鉴别准确率已经得到较大程度提高。当用PCA Sort替代了模型中的PCA算法后,结合FLDA和KNN算法则鉴别准确率达到98.33%。实验结果表明PCA Sort结合FLDA和KNN所建立的模型是有效的生菜贮存时间鉴别模型。 展开更多
关键词 近红外光谱 成分分析 生菜 模糊鉴别线性分析 k近邻算法
在线阅读 下载PDF
基于三维荧光光谱和四元数主成分分析的食醋品牌溯源研究 被引量:1
5
作者 谈爱玲 王思远 +2 位作者 赵勇 周昆鹏 卢樟健 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2018年第7期2163-2169,共7页
提出基于四元数主成分分析的三维荧光光谱特征提取新方法,并将其运用于品牌食醋溯源研究。首先利用F7000荧光光谱仪测得不同品牌食醋样本的三维荧光光谱数据,获取样本的等高线图和三维投影图,并进行三维荧光等高线图分析;然后利用激发... 提出基于四元数主成分分析的三维荧光光谱特征提取新方法,并将其运用于品牌食醋溯源研究。首先利用F7000荧光光谱仪测得不同品牌食醋样本的三维荧光光谱数据,获取样本的等高线图和三维投影图,并进行三维荧光等高线图分析;然后利用激发波长分别为380,360和400nm下的发射光谱数据建立食醋三维荧光光谱数据的四元数并行表示模型,对四元数荧光光谱矩阵进行四元数主成分特征提取,并基于乘积运算、模值运算和求和运算三种方法对提取出来的四元数主成分特征进行特征融合;最后将融合特征作为K近邻分类器的输入,得到不同食醋品牌的最优分类模型。分别讨论三种不同特征融合方法和四元数主成分个数与最终模型分类正确率之间的关系。针对四个不同食醋品牌120个样本的分析结果可得:基于求和特征融合运算所得到的融合特征可以利用最少的特征数目,建立最优的溯源模型,样本预测集溯源正确率可达100%。研究结果表明:四元数主成分特征提取和特征融合方法能够并行表示三维荧光光谱数据所蕴含的丰富信息,为三维荧光光谱数据分析提供新思路。 展开更多
关键词 三维荧光光谱 食醋溯源 四元数成分分析 特征提取 k近邻
在线阅读 下载PDF
基于主成分分析的超声人脸识别算法研究 被引量:8
6
作者 王婧瑶 许勇 +1 位作者 曹本希 杨军 《计算机工程与设计》 CSCD 北大核心 2013年第8期2867-2871,共5页
针对超声波探测人脸识别系统中多通道探测模式,从数据融合的角度对特征进行了优化,研究了基于主成分分析(principal components analysis,PCA)的数据降维和人脸特征提取算法。利用该算法对100人的自由表情样本进行特征提取,在保证识别... 针对超声波探测人脸识别系统中多通道探测模式,从数据融合的角度对特征进行了优化,研究了基于主成分分析(principal components analysis,PCA)的数据降维和人脸特征提取算法。利用该算法对100人的自由表情样本进行特征提取,在保证识别率超过80%前提下,可显著降低特征向量的维数达80%以上,提高系统速度85%以上。实验结果表明,PCA算法能有效降低特征数据的维数,提高运算速度。 展开更多
关键词 成分分析 一维距离像 k近邻分类器 感知器算法 超声人脸识别
在线阅读 下载PDF
基于主分量分析的声信号特征提取及识别研究 被引量:12
7
作者 陈丹 李京华 +1 位作者 黄根全 许俊峰 《声学技术》 EI CSCD 北大核心 2005年第1期39-41,45,共4页
主分量分析(PCA)是统计学中分析数据的一种有效方法。研究了基于这种算法对四种战场目标的声信号进行特征提取,获得了低维的特征类器对声目标进行分类,分类结果准确率较高。
关键词 分量分析 信号特征提取 识别 特征提取算法 改进BP网络 有效方法 分析数据 战场目标 特征向量 声信号 统计学 声目标 分类器 k近邻 准确率
在线阅读 下载PDF
PCA与KNN在胎心率与宫缩描记图分类中的研究 被引量:1
8
作者 孟娜 王冰 《计算机工程与应用》 CSCD 北大核心 2010年第7期223-225,238,共4页
提出了基于主成分分析(Principal Component Analysis,PCA)的K近邻(K Nearest Neighbor,KNN)分类原理,并将其应用于胎心率与宫缩描记图分类。主要思想是:对训练样本和测试样本进行降维,并对降维后的测试样本使用KNN分类技术分类。选择2... 提出了基于主成分分析(Principal Component Analysis,PCA)的K近邻(K Nearest Neighbor,KNN)分类原理,并将其应用于胎心率与宫缩描记图分类。主要思想是:对训练样本和测试样本进行降维,并对降维后的测试样本使用KNN分类技术分类。选择2120组胎心率与宫缩描记图数据,使用该方法进行分类测试。实验结果表明,使用该类模型,分类结果稳定,分类准确率高,并且能够降低高维空间搜索K近邻的复杂性,减轻计算负担。 展开更多
关键词 成分分析 k近邻分类 胎心率与宫缩描记图
在线阅读 下载PDF
基于振动分析法的变压器故障分类和识别 被引量:11
9
作者 夏玉剑 李敏 +3 位作者 陈果 石同春 沈大千 王昕 《电测与仪表》 北大核心 2017年第17期7-10,17,共5页
为了实现变压器故障的直观分类和故障识别,在分析变压器振动机理的基础上,提出一种基于主成分分析和KNN分类识别的变压器故障测量方法。该方法采用EMMD(集合经验模式分解)方法提取变压器不同运行状态下振动信号的特征矢量,将该特征矢量... 为了实现变压器故障的直观分类和故障识别,在分析变压器振动机理的基础上,提出一种基于主成分分析和KNN分类识别的变压器故障测量方法。该方法采用EMMD(集合经验模式分解)方法提取变压器不同运行状态下振动信号的特征矢量,将该特征矢量通过主成分分析投影到直观的二维图像中。利用KNN分类识别实现故障分类和自动故障识别。试验结果表明,该方法可以实现对变压器正常状态、绕组变形、铁芯故障3种状态直观分类,并对测试样本进行快速的自动模式识别。 展开更多
关键词 振动分析 集合经验模式分解 特征矢量 成分分析 k近邻
在线阅读 下载PDF
基于标准距离k近邻的多模态过程故障检测策略 被引量:15
10
作者 冯立伟 张成 +1 位作者 李元 谢彦红 《控制理论与应用》 EI CAS CSCD 北大核心 2019年第4期553-560,共8页
工业产品的生产经常需要在不同模态间切换,多模态过程数据具有多中心和方差差异大等特点.针对多模态过程数据的特征,通过构造标准距离,提出了基于标准距离k近邻的故障检测策略(SD–kNN).首先在标准距离度量下计算样本与其前k近邻的距离... 工业产品的生产经常需要在不同模态间切换,多模态过程数据具有多中心和方差差异大等特点.针对多模态过程数据的特征,通过构造标准距离,提出了基于标准距离k近邻的故障检测策略(SD–kNN).首先在标准距离度量下计算样本与其前k近邻的距离;其次将近邻距离的平方和的均值作为样本的统计量D^2;最后,根据D^2的分布确定检测方法的控制限,当新样本的D^2大于控制限时,判定其为故障,否则为正常.标准距离使不同模态中样本间的近邻距离能够在同一尺度下度量,使得SD–kNN的D^2能够准确反映样本间的相似程度.进行了数值模拟过程和青霉素发酵过程故障检测实验. SD–kNN方法检测出了数值模拟过程的全部故障和青霉素过程95%以上的故障,相对于PCA, kPCA, FD–kNN等方法具有更高的故障检测率. SD–kNN继承了FD–kNN对一般多模态过程的故障检测能力,还能够对方差差异显著的多模态过程进行故障检测. 展开更多
关键词 分析 分析 k近邻 故障检测 多模态
在线阅读 下载PDF
基于权重k近邻的多模态过程故障检测方法 被引量:12
11
作者 冯立伟 张成 +1 位作者 李元 谢彦红 《控制工程》 CSCD 北大核心 2019年第11期1986-1993,共8页
工业过程往往运行于多个生产模态,针对多模态过程数据的空间分布特点:中心漂移和模态协方差差异明显,提出了基于权重k近邻的故障检测方法(FD-wkNN)。首先在训练数据集中寻找第k近邻并计算近邻距离;其次把此k近邻与其前K近邻集的局部近... 工业过程往往运行于多个生产模态,针对多模态过程数据的空间分布特点:中心漂移和模态协方差差异明显,提出了基于权重k近邻的故障检测方法(FD-wkNN)。首先在训练数据集中寻找第k近邻并计算近邻距离;其次把此k近邻与其前K近邻集的局部近邻平均距离倒数作为权重,构建加权平均累积距离D作为统计量。加权平均累积距离可以有效降低中心漂移和协方差差异明显的影响;最后,利用核密度估计确定训练样本集统计量D的控制限,当新样本的加权平均累积距离大于控制限时,则其为故障;否则为正常。FD-wkNN具有对协方差较小模态的微弱故障的检测能力。通过模拟实例和青霉素发酵过程进行故障检测仿真实验,并与PCA,KPCA,FD-kNN等方法比较,验证了所提方法的有效性。 展开更多
关键词 分析 分析 k近邻 多模态 故障检测
在线阅读 下载PDF
基于PCA+KNN和kernal-PCA+KNN算法的废旧纺织物鉴别 被引量:2
12
作者 李宁宁 刘正东 +2 位作者 王海滨 韩熹 李文霞 《分析测试学报》 CAS CSCD 北大核心 2024年第7期1039-1045,共7页
该研究采集了15类废旧纺织物的4 998张近红外谱图,以7∶3的比例分为训练集和验证集,并分别采用主成分分析(PCA)与核主成分分析(kernal-PCA)两种不同降维方法对数据进行降维,并选用余弦相似度(cosine)核作为kernal-PCA的最佳核函数,最后... 该研究采集了15类废旧纺织物的4 998张近红外谱图,以7∶3的比例分为训练集和验证集,并分别采用主成分分析(PCA)与核主成分分析(kernal-PCA)两种不同降维方法对数据进行降维,并选用余弦相似度(cosine)核作为kernal-PCA的最佳核函数,最后分别将PCA和kernal-PCA降维处理后的数据进行k-近邻算法(KNN)训练。结果表明,kernal-PCA+KNN的模型准确率(95.17%)优于PCA+KNN模型的准确率(92.34%)。研究表明,kernal-PCA+KNN算法可以实现15类废旧纺织物识别准确率的提升,为废旧纺织物在线近红外自动分拣提供有力的技术支撑。 展开更多
关键词 废旧纺织物 成分分析(PCA) 成分分析(kernel-PCA) k-近邻算法(kNN) 分类识别
在线阅读 下载PDF
利用KPCA特征提取的Adaboost红外目标检测 被引量:7
13
作者 吴燕茹 程咏梅 +2 位作者 赵永强 高仕博 魏坤 《红外与激光工程》 EI CSCD 北大核心 2011年第2期338-343,共6页
针对传统红外目标检测算法中存在的不足,提出了一种基于核主成分分析(KPCA)特征提取的Adaboost分类器红外目标检测算法。首先,采用KPCA对目标训练样本进行特征提取,将背景训练样本和待检测样本在概率核空间中向目标样本特征量投影作为... 针对传统红外目标检测算法中存在的不足,提出了一种基于核主成分分析(KPCA)特征提取的Adaboost分类器红外目标检测算法。首先,采用KPCA对目标训练样本进行特征提取,将背景训练样本和待检测样本在概率核空间中向目标样本特征量投影作为它们的特征量;然后,用目标和背景样本特征来训练Adaboost分类器;最后,用此分类器对待检测样本的特征量进行目标检测,并对比分析了支持向量机(SVM)和二次相关滤波器(QCF)的检测算法性能。实验表明,该方法能实现对红外目标较为鲁棒和准确的检测,并且算法中的参数设定具有一定的自适应性。 展开更多
关键词 红外目标检测 成分分析 ADABOOST分类器 帧检测精度
在线阅读 下载PDF
基于相融性度量的光谱分类方法 被引量:4
14
作者 李乡儒 吴福朝 +1 位作者 胡占义 罗阿理 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2005年第11期1889-1892,共4页
海量天体光谱的自动分类以及从海量天体光谱中发现新类型天体或新的天文规律(知识发现)已经受到天文工作者的普遍关注。在相关文献中这两方面的研究工作都是分别进行的。文章首先提出了一种相融性度量的概念,该度量能够刻画一个样本与... 海量天体光谱的自动分类以及从海量天体光谱中发现新类型天体或新的天文规律(知识发现)已经受到天文工作者的普遍关注。在相关文献中这两方面的研究工作都是分别进行的。文章首先提出了一种相融性度量的概念,该度量能够刻画一个样本与训练样本集融合为一体的程度。然后,在此基础上给出了一种基于相融性度量的k-近邻分类方法。该方法不仅能够实现较准确的分类,而且还具有相当好的知识发现能力。通过对活动星系与活动星系核实验表明,该方法无论对分类还是对知识发现都是非常有效的。 展开更多
关键词 相融性度量 知识发现 活动星系(AGNs) 活动星系(AGS) 成分分析(PGA) 近邻方法
在线阅读 下载PDF
基于KPCA-SVM的S700K转辙机故障诊断方法 被引量:6
15
作者 张友鹏 魏智健 +1 位作者 杨妮 张迪 《安全与环境学报》 CAS CSCD 北大核心 2023年第9期3089-3097,共9页
针对S700K转辙机动作功率曲线非线性特征多样化、复杂化的特点,提出了一种基于核主成分分析(Kernel Principal Component Analysis,KPCA)和支持向量机(Support Vector Machine,SVM)的智能故障诊断方法。首先,对S700K转辙机的功率曲线进... 针对S700K转辙机动作功率曲线非线性特征多样化、复杂化的特点,提出了一种基于核主成分分析(Kernel Principal Component Analysis,KPCA)和支持向量机(Support Vector Machine,SVM)的智能故障诊断方法。首先,对S700K转辙机的功率曲线进行分析,研究正常曲线变化规律,总结常见故障类型功率曲线的变化现象和故障原因。然后,从功率曲线中提取10种时域特征值组成初始特征数据集,用KPCA算法将特征数据映射到高维特征空间中对其进行PCA降维,得到故障样本的非线性主成分。最后,将得到的非线性主成分作为多分类SVM的输入样本进行故障模式识别。采用粒子群优化(Particle Swarm Optimization,PSO)算法分别对核函数参数和SVM惩罚因子进行优化,提高模型的诊断精度。仿真结果表明,该模型能够有效提取转辙机故障信号的非线性特征,故障诊断精度达到97%,诊断时间较短,适用于准确性、实时性要求更高的提速道岔。 展开更多
关键词 安全工程 S700k转辙机 故障诊断 成分分析 粒子群优化算法 支持向量机
在线阅读 下载PDF
基于NSVM的核空间训练数据减少方法 被引量:2
16
作者 王晓 刘小芳 《电子科技大学学报》 EI CAS CSCD 北大核心 2013年第4期592-596,共5页
针对核空间中大数据集的计算代价高问题,提出用NSVM方法减少分类器的训练数据。先用NSVM、核主成分分析(KPCA)和贪婪KPCA分别从全部训练数据中提取训练分类器的子集;再用子集训练分类器,并用训练和测试数据的错分率对分类结果进行评价... 针对核空间中大数据集的计算代价高问题,提出用NSVM方法减少分类器的训练数据。先用NSVM、核主成分分析(KPCA)和贪婪KPCA分别从全部训练数据中提取训练分类器的子集;再用子集训练分类器,并用训练和测试数据的错分率对分类结果进行评价。在两个数据集和两种分类器中,用KPCA提取的子集训练的分类器的分类性能弱于NSVM和贪婪KPCA,但用贪婪KPCA提取的子集训练的分类器的泛化能力弱于NSVM。仿真结果表明,用NSVM方法提取的子集训练的分类器,不仅保证了分类器的泛化能力,也降低了分类算法的计算复杂度。 展开更多
关键词 分类器 贪婪成分分析 成分分析 非线性支持向量机 支持向量 训练数据
在线阅读 下载PDF
基于KPCA及SVM的蛋白质O-糖基化位点的预测 被引量:4
17
作者 杨雪梅 苏祯 《科学技术与工程》 北大核心 2013年第25期7371-7376,共6页
为了提高蛋白质O-糖基化位点的预测准确率,提出了把核主成分分析(KPCA)与支持向量机(SVM)相结合的方法。实验样本用稀疏编码方式编码,窗口长度为21。首先,用核主成分分析提取了样本的核主成分(特征);然后,在特征空间中用改进的支持向量... 为了提高蛋白质O-糖基化位点的预测准确率,提出了把核主成分分析(KPCA)与支持向量机(SVM)相结合的方法。实验样本用稀疏编码方式编码,窗口长度为21。首先,用核主成分分析提取了样本的核主成分(特征);然后,在特征空间中用改进的支持向量机(ISVM)进行分类(预测)。在使用支持向量机分类时,设置了一个边界系数αc来减少运算的复杂度。实验结果表明,使用KPCA+ISVM的方法预测的效果优于PCA+SVM的预测效果。预测准确率为87%。更进一步,用不同长度的样本做实验(w=5,7,9,11,21,31,41,51),使用多数投票法综合各子分类器的优势。结果表明,组合分类器的预测准确率优于子分类器的预测准确率,预测准确率为88%。 展开更多
关键词 预测蛋白质 成分分析 改进的支持向量机 组合分类器
在线阅读 下载PDF
结合DCT与KPCA的人脸识别 被引量:5
18
作者 刘嵩 《计算机工程与应用》 CSCD 2012年第27期186-188,205,共4页
核主成分分析是主成分分析在核空间中的非线性推广,能有效应用于人脸识别,但是识别过程时间开销过大仍是待解决的问题。提出了一种结合离散余弦变换和核主分量分析的人脸识别方法。对人脸图像进行离散余弦变换,选择部分系数重建图像,采... 核主成分分析是主成分分析在核空间中的非线性推广,能有效应用于人脸识别,但是识别过程时间开销过大仍是待解决的问题。提出了一种结合离散余弦变换和核主分量分析的人脸识别方法。对人脸图像进行离散余弦变换,选择部分系数重建图像,采用核主分量分析的方法提取人脸特征,采用最近邻分类器进行识别。在ORL人脸库上的仿真结果表明所提出的方法速度快,综合性能优于核主成分分析方法。 展开更多
关键词 人脸识别 特征提取 成分分析 离散余弦变换 近邻分类器
在线阅读 下载PDF
集成KPCA与t‑SNE的滚动轴承故障特征提取方法 被引量:22
19
作者 王望望 邓林峰 +1 位作者 赵荣珍 吴耀春 《振动工程学报》 EI CSCD 北大核心 2021年第2期431-440,共10页
针对滚动轴承原始数据集包含高维非敏感特征的问题,提出一种集成核主成分分析(Kernel Principal Component Analysis,KPCA)与t‑分布随机邻域嵌入(t‑distributed Stochastic Neighbor Embedding,t‑SNE)的滚动轴承故障低维敏感特征提取方... 针对滚动轴承原始数据集包含高维非敏感特征的问题,提出一种集成核主成分分析(Kernel Principal Component Analysis,KPCA)与t‑分布随机邻域嵌入(t‑distributed Stochastic Neighbor Embedding,t‑SNE)的滚动轴承故障低维敏感特征提取方法。该方法先计算滚动轴承原始振动信号的时域、频域以及时频域特征,构建初始高维特征数据集。利用KPCA降低高维数据集的相关性,在最大化高维数据全局特征方差的目标下,提取出非线性特征子集。通过t‑SNE充分挖掘故障特征数据集的局部结构信息,进一步获取具有高判别性的低维敏感特征子集。将低维特征子集输入到k‑近邻分类器(k‑nearest Neighbor Classifier,KNNC)进行分类,以分类准确率和聚类结果作为度量指标,对特征提取结果的优劣予以评价。上述过程综合考虑了数据集的全局和局部结构特征,充分利用了数据自身的结构信息,从而可准确提取其低维敏感特征。将该方法用于滚动轴承故障诊断实验中,通过与其他典型特征提取方法进行对比,及其对含噪情况下轴承故障特征的准确提取,验证了方法的有效性。 展开更多
关键词 故障诊断 滚动轴承 故障特征提取 成分分析 t‑分布随机邻域嵌入 k近邻分类器
在线阅读 下载PDF
聚KPCA在高维轴承故障诊断中的应用 被引量:10
20
作者 郑恒 姜宏 章翔峰 《机床与液压》 北大核心 2021年第11期179-182,共4页
轴承故障诊断环境复杂、影响因素多,导致特征高维化成为一个技术难题,采用核主成分分析法(KPCA)进行高维特征降维取得了一定成效,但KPCA未考虑特征间的相似性对计算复杂度以及分离效果的影响,对提高计算实时性和有效性以及提升分类效果... 轴承故障诊断环境复杂、影响因素多,导致特征高维化成为一个技术难题,采用核主成分分析法(KPCA)进行高维特征降维取得了一定成效,但KPCA未考虑特征间的相似性对计算复杂度以及分离效果的影响,对提高计算实时性和有效性以及提升分类效果形成了限制。为此提出了基于K均值聚类算法和KPCA方法的聚KPCA方法。利用均值聚类算法的思想对所提取的时、频域特征中的相似特征进行聚类,降低后续KPCA计算的复杂度,再用KPCA对聚类后的特征进行降维,将高维特征映射到一个类别可分度较高的特征空间。利用正常、内圈故障、外圈故障、滚动体故障4种轴承状态信号特征对聚KPCA方法进行验证,结果表明:与KPCA方法相比,所提出的聚KPCA方法具有更好的降维分离效果和较强的鲁棒性。 展开更多
关键词 成分分析 降维 鲁棒性 k均值聚类算法
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部