旋转机械的剩余使用寿命(remaining useful life, RUL)预测对工业设备预测和健康管理的具有重要意义。该文针对多传感器冗余数据导致旋转机械退化信息提取困难、剩余使用寿命预测效果差的问题,提出了一种基于核主成分分析-长短期记忆网...旋转机械的剩余使用寿命(remaining useful life, RUL)预测对工业设备预测和健康管理的具有重要意义。该文针对多传感器冗余数据导致旋转机械退化信息提取困难、剩余使用寿命预测效果差的问题,提出了一种基于核主成分分析-长短期记忆网络(kernel principal component analysis-long short term memory, KPCA-LSTM)的方法对旋转机械剩余使用寿命预测。首先,分析旋转机械的多维退化数据,选择可以表征旋转机械退化的数据;其次,对退化数据进行(kernel principal component analysis, KPCA)融合及特征提取,将降维融合的特征作为预测模型的输入;然后构建旋转机械的健康指标,并通过多阶微分划分旋转机械的不同健康状态,建立KPCA-LSTM模型对旋转机械的剩余使用寿命进行预测;最后,在实验室搭建的矿用减速器平台上进行了试验验证。试验结果表明:该文所提方法与LSTM、粒子群优化LSTM的方法比较,该方法预测效果优于其他两种模型,并降低模型训练的复杂性,减少预测用时。展开更多
为了解决多工况、非线性工业过程的故障检测问题,在基于先验知识的基础之上提出了基于多核主元分析方法(Multiple-Kernel Principal Component Analysis,KPCA)的故障检测办法。首先收集每个工况稳态过程的历史正常数据,直接建立子KPCA...为了解决多工况、非线性工业过程的故障检测问题,在基于先验知识的基础之上提出了基于多核主元分析方法(Multiple-Kernel Principal Component Analysis,KPCA)的故障检测办法。首先收集每个工况稳态过程的历史正常数据,直接建立子KPCA模型求得各自的控制限,其次收集工况间的过渡过程的历史正常数据,采取加权平均法求其控制限,最后对过程的故障数据进行检测。以田纳西-伊斯曼过程(Tennessee-Eastman Process,TEP)与MATLAB结合进行仿真实验。仿真结果表明,与单工况、非线性过程进行相比,该方法更为快速、准确。展开更多
水泥生产过程中,分解炉出口温度是非常重要的工艺参数,为了应对出口温度变量的多样性,文章提出一种核主成分分析(kernel principal component analysis,KPCA)与双向长短期记忆(bidirectional long short-term memory,BiLSTM)神经网络相...水泥生产过程中,分解炉出口温度是非常重要的工艺参数,为了应对出口温度变量的多样性,文章提出一种核主成分分析(kernel principal component analysis,KPCA)与双向长短期记忆(bidirectional long short-term memory,BiLSTM)神经网络相结合的温度预测组合模型用来预测分解炉的出口温度。通过KPCA筛选出影响因素的主成分从而达到数据降维目的,将降维后的主成分作为BiLSTM神经网络的输入,分解炉出口温度作为BiLSTM神经网络的输出。经BiLSTM神经网络训练,得到分解炉出口温度预测模型。通过对比验证表明,使用KPCA-BiLSTM相结合的温度预测模型具有较好的预测精度。展开更多
文摘旋转机械的剩余使用寿命(remaining useful life, RUL)预测对工业设备预测和健康管理的具有重要意义。该文针对多传感器冗余数据导致旋转机械退化信息提取困难、剩余使用寿命预测效果差的问题,提出了一种基于核主成分分析-长短期记忆网络(kernel principal component analysis-long short term memory, KPCA-LSTM)的方法对旋转机械剩余使用寿命预测。首先,分析旋转机械的多维退化数据,选择可以表征旋转机械退化的数据;其次,对退化数据进行(kernel principal component analysis, KPCA)融合及特征提取,将降维融合的特征作为预测模型的输入;然后构建旋转机械的健康指标,并通过多阶微分划分旋转机械的不同健康状态,建立KPCA-LSTM模型对旋转机械的剩余使用寿命进行预测;最后,在实验室搭建的矿用减速器平台上进行了试验验证。试验结果表明:该文所提方法与LSTM、粒子群优化LSTM的方法比较,该方法预测效果优于其他两种模型,并降低模型训练的复杂性,减少预测用时。
文摘为了解决多工况、非线性工业过程的故障检测问题,在基于先验知识的基础之上提出了基于多核主元分析方法(Multiple-Kernel Principal Component Analysis,KPCA)的故障检测办法。首先收集每个工况稳态过程的历史正常数据,直接建立子KPCA模型求得各自的控制限,其次收集工况间的过渡过程的历史正常数据,采取加权平均法求其控制限,最后对过程的故障数据进行检测。以田纳西-伊斯曼过程(Tennessee-Eastman Process,TEP)与MATLAB结合进行仿真实验。仿真结果表明,与单工况、非线性过程进行相比,该方法更为快速、准确。
文摘水泥生产过程中,分解炉出口温度是非常重要的工艺参数,为了应对出口温度变量的多样性,文章提出一种核主成分分析(kernel principal component analysis,KPCA)与双向长短期记忆(bidirectional long short-term memory,BiLSTM)神经网络相结合的温度预测组合模型用来预测分解炉的出口温度。通过KPCA筛选出影响因素的主成分从而达到数据降维目的,将降维后的主成分作为BiLSTM神经网络的输入,分解炉出口温度作为BiLSTM神经网络的输出。经BiLSTM神经网络训练,得到分解炉出口温度预测模型。通过对比验证表明,使用KPCA-BiLSTM相结合的温度预测模型具有较好的预测精度。