期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
适用于关联属性的样本自适应参数孤立点检测法 被引量:3
1
作者 刘胜宗 樊晓平 廖志芳 《计算机应用研究》 CSCD 北大核心 2012年第9期3259-3262,共4页
为解决数据集中关联属性之间的干扰问题,通过引进Mahalanobis距离,并对传统的k近邻孤立点检测方法进行了改进,提出了一种新的基于样本的参数选取方法。该方法通过训练数据集中的正常数据和孤立点数据,以获得最优的k距离值和阈值。实验... 为解决数据集中关联属性之间的干扰问题,通过引进Mahalanobis距离,并对传统的k近邻孤立点检测方法进行了改进,提出了一种新的基于样本的参数选取方法。该方法通过训练数据集中的正常数据和孤立点数据,以获得最优的k距离值和阈值。实验仿真结果表明,提出的算法有更高的准确率,同时降低了误检率。 展开更多
关键词 孤立点检测 关联属性 样本自适应 MAHALANOBIS距离
在线阅读 下载PDF
基于预测编码的样本自适应行动策略规划 被引量:7
2
作者 梁星星 马扬 +4 位作者 冯旸赫 张驭龙 张龙飞 廖世江 刘忠 《软件学报》 EI CSCD 北大核心 2022年第4期1477-1500,共24页
军事行动、反恐突击等强对抗场景中,实时信息的碎片化、不确定性对制定具有博弈优势的弹性行动方案提出了更高的要求,研究具有自学习能力的智能行动策略规划方法已成为编队级强对抗任务的核心问题.针对复杂场景下行动策略规划状态表征... 军事行动、反恐突击等强对抗场景中,实时信息的碎片化、不确定性对制定具有博弈优势的弹性行动方案提出了更高的要求,研究具有自学习能力的智能行动策略规划方法已成为编队级强对抗任务的核心问题.针对复杂场景下行动策略规划状态表征困难、数据效率低下等问题,提出了基于预测编码的样本自适应行动策略规划方法.利用自编码模型压缩表示任务的原始状态空间,通过任务环境的状态转移样本,在低维度状态空间中使用混合密度分布网络对任务环境的动态模型进行学习,获得了表征环境动态性的预测编码;基于预测编码展开行动策略规划研究,利用时间差分敏感的样本自适应方法对状态评估值函数进行预测,改善了数据效率,加速了算法收敛.为了验证算法的有效性,基于全国兵棋推演大赛机机挑战赛的想定,构建了包含大赛获奖选手操作策略的5种规则智能体,利用消融实验验证编码方式、样本采样策略等不同因子组合对算法的影响,并使用Elo评分机制对各个智能体进行排序;实验结果表明:基于预测编码的样本自适应算法——MDN-AF得分排序最高,对战平均胜率为71%,其中大比分获胜局占比为67.6%,而且学习到了自主波次划分、补充侦察策略、“蛇形”打击策略、轰炸机靠后突袭等4种长时行动策略.该算法框架应用于2020年全国兵棋推演大赛的智能体开发,并获得了全国一等奖. 展开更多
关键词 行动规划 强化学习 兵棋推演 预测编码 样本自适应
在线阅读 下载PDF
用于水声目标识别的自适应遗传样本选择算法 被引量:3
3
作者 戴健 杨宏晖 +1 位作者 王芸 孙进才 《声学技术》 CSCD 2013年第4期332-335,共4页
针对训练样本集中含有噪声样本、冗余样本以及无关样本,导致分类系统分类性能下降、不稳定的水声目标识别问题,提出了一种新的自适应遗传样本选择算法(Adaptive Genetic Instance Selection Algorithm,AGISA)。算法先随机生成初始种群,... 针对训练样本集中含有噪声样本、冗余样本以及无关样本,导致分类系统分类性能下降、不稳定的水声目标识别问题,提出了一种新的自适应遗传样本选择算法(Adaptive Genetic Instance Selection Algorithm,AGISA)。算法先随机生成初始种群,接着利用设计的遗传算子(跨代选择、自适应交叉和简化最近邻变异)指导种群进化,每代中对分类贡献大且选择样本数目少的个体适应度值高。提取了实测3类水声目标的多域特征,进行样本选择和分类识别仿真实验,结果表明:AGISA可以选出有效样本子集,在样本维数下降约73%的情况下,支持向量机分类器的正确分类率能提高约2.5%;并且AGISA具有较好的收敛性、稳定性,所得优化样本子集具有较好泛化能力且能明显减少分类的时间。 展开更多
关键词 自适应遗传样本选择 水声目标识别 样本选择 分类识别
在线阅读 下载PDF
基于SSIM的自适应样本块图像修复算法 被引量:20
4
作者 何凯 牛俊慧 +1 位作者 沈成南 卢雯霞 《天津大学学报(自然科学与工程技术版)》 EI CSCD 北大核心 2018年第7期763-767,共5页
现有基于样本块的图像修复算法,大多通过人工设定样本块大小来达到最佳修复效果,缺乏自适应性;此外,对图像不同纹理和结构区域采用相同大小的样本块,也不利于获得整体最优修复效果.为解决上述问题,本文提出一种基于改进结构相似性的自... 现有基于样本块的图像修复算法,大多通过人工设定样本块大小来达到最佳修复效果,缺乏自适应性;此外,对图像不同纹理和结构区域采用相同大小的样本块,也不利于获得整体最优修复效果.为解决上述问题,本文提出一种基于改进结构相似性的自适应样本块大小选取算法,在传统的SSIM算法的基础上增加了梯度信息,并通过结合样本块亮度、对比度和结构3个模块来衡量结构差异,以此确定不同结构和纹理区域的最优样本块大小,提高算法适应性,改善修复效果.仿真实验结果表明,当图像存在复杂的结构和纹理信息时,本文算法仍然能够获得理想的修复效果. 展开更多
关键词 图像修复 纹理合成 自适应样本 SSIM算法 梯度信息
在线阅读 下载PDF
融合动量BP算法的样本数自适应粒子滤波
5
作者 张园 赵长胜 李晓明 《小型微型计算机系统》 CSCD 北大核心 2019年第8期1612-1616,共5页
传统粒子滤波算法样本数保持不变,而固定的样本数将会直接影响粒子滤波算法的计算复杂度,进而影响粒子滤波算法的实时性和精度.针对这一问题,引入样本数可自适应调整的粒子滤波,既可以在每一步状态方差估计中设定样本数的下限,也考虑了... 传统粒子滤波算法样本数保持不变,而固定的样本数将会直接影响粒子滤波算法的计算复杂度,进而影响粒子滤波算法的实时性和精度.针对这一问题,引入样本数可自适应调整的粒子滤波,既可以在每一步状态方差估计中设定样本数的下限,也考虑了状态方差过大或者过小的情形;同时将动量BP算法与样本数自适应粒子滤波结合,增大位于低概率密度区域粒子的权值,使位于这部分区域的小权值粒子重新进入高权值区域,降低粒子退化,同时部分高权值的粒子分裂为小权值粒子.仿真模型选取为单变量非静态增长模型和多维单目标跟踪模型,仿真结果得出:使用融合动量BP算法的样本数自适应粒子滤波优于标准粒子滤波算法、基于BP神经网络的粒子滤波算法,在系统状态、均方根误差、估计与真值的关系、有效粒子数等方面体现出较好的预测能力,预测结果表现为精度较高,稳定性较好,且降低了计算的复杂度. 展开更多
关键词 粒子滤波 滤波精度 样本自适应 动量BP算法 实时性
在线阅读 下载PDF
融合簇边界移动与自适应合成的混合采样算法 被引量:6
6
作者 高雷阜 张梦瑶 赵世杰 《电子学报》 EI CAS CSCD 北大核心 2022年第10期2517-2529,共13页
针对伪负采样算法(Pseudo-Negative Sampling,PNS)存在的类内子聚集和类别重叠问题,提出一种融合簇边界负样本移动策略(Cluster Boundary Negative Movement Strategy,CBNMS)与自适应正样本合成技术(Adaptive Pos⁃itive Synthesis Techn... 针对伪负采样算法(Pseudo-Negative Sampling,PNS)存在的类内子聚集和类别重叠问题,提出一种融合簇边界负样本移动策略(Cluster Boundary Negative Movement Strategy,CBNMS)与自适应正样本合成技术(Adaptive Pos⁃itive Synthesis Technology,ADPST)的改进混合采样算法(Improved Cluster Boundary Negative Movement Strategy,ICB⁃NMS),以提升非均衡数据的整体分类性能和正类识别精度.CBNMS策略采用凝聚层次聚类对正负类样本进行划分,并通过各局部样本间相似关系识别潜在负类中且与正类相关性较大的簇边界负样本,提高采样的局部精确性和时效性.为进一步加强CBNMS策略对正样本重叠区域的识别性能,ICBNMS算法在簇边界负样本移动均衡化基础上,引入ADPST技术,利用稀疏度与距离复合因子组合加权以自适应确定最优样本生成区域,从而有效削弱样本的重叠性且丰富样本的多样性.实验结果表明,相比其他采样算法,ICBNMS算法在10个非均衡数据集的多组实验中G-mean和Fmeasure等指标获得最优值,且时间效率比CDSMOTE和PNS算法分别提升了32.27%和27.88%,凸显出更优越的鲁棒性和泛化性. 展开更多
关键词 非均衡数据分类 凝聚层次聚类 簇边界负样本移动 自适应样本合成 混合采样
在线阅读 下载PDF
基于结构相关性的自适应图像修复 被引量:7
7
作者 周先春 徐燕 《计算机科学》 CSCD 北大核心 2020年第4期131-135,共5页
针对传统的Criminisi修复算法中优先函数计算的不足,以及修复后图像质量下降的问题,文中提出了一种基于结构相关性的自适应图像修复算法。首先,引入结构相关性,对优先权计算进行改进,增加优先权计算的可靠性;然后,自适应选择样本块大小... 针对传统的Criminisi修复算法中优先函数计算的不足,以及修复后图像质量下降的问题,文中提出了一种基于结构相关性的自适应图像修复算法。首先,引入结构相关性,对优先权计算进行改进,增加优先权计算的可靠性;然后,自适应选择样本块大小,使修复更加准确并提高修复效率;最后,引入HSV颜色空间,根据样本的色度、亮度来搜寻最佳匹配块,减少修复误差,完成图像恢复。实验结果表明,所提算法在主观视觉上有明显提升,并且在峰值信噪比(PSNR)和结构相似度(SSIM)方面均有一定提高,修复效果明显,与传统的Criminisi修复算法相比,其峰值信噪比提高了1~3 dB,结构相似度更接近1。所提算法利用结构相关性和自适应选择样本块大小对彩色破损图像进行修复,优先权计算更加合理准确,修复效率有所提高,修复效果可视性更佳,有利于实际应用。 展开更多
关键词 图像修复 结构相关性 自适应样本 HSV颜色空间
在线阅读 下载PDF
强化边缘结构的分段自适应图像修复算法 被引量:3
8
作者 吕伏 张文丽 《计算机应用研究》 CSCD 北大核心 2023年第6期1900-1905,共6页
针对基于样本的图像修复技术在修复井下煤岩图像时存在纹理过渡延伸和边缘结构不连续的问题,提出一种强化边缘结构的分段自适应图像修复算法,其在Criminisi算法中引入基于ISEF的数据项和等照度线曲率信息构成新的优先权函数,解决了修复... 针对基于样本的图像修复技术在修复井下煤岩图像时存在纹理过渡延伸和边缘结构不连续的问题,提出一种强化边缘结构的分段自适应图像修复算法,其在Criminisi算法中引入基于ISEF的数据项和等照度线曲率信息构成新的优先权函数,解决了修复顺序不当的问题;并利用局部方差特征与信息熵划分的区域类型自适应选择样本块大小,解决了边缘保持的问题。在常用测试图像与孟村煤矿的煤岩图像上进行了修复实验,相较于传统的Criminisi方法,该算法的平均PSNR分别提升了0.37 dB与1.33 dB,平均SSIM分别提升了0.0023与0.0027。实验结果表明,该算法对纹理结构信息复杂的图像具有较好的修复效果,为煤壁图像的修复奠定了基础。 展开更多
关键词 图像修复 煤壁修复 Criminisi算法 自适应样本块大小 优先权模型
在线阅读 下载PDF
一种快速AdaBoost.RT集成算法时间序列预测研究 被引量:5
9
作者 严智 张鹏 +2 位作者 谢川 张钰林 李保军 《电子测量与仪器学报》 CSCD 北大核心 2019年第6期82-88,共7页
传统AdaBoost.RT算法的训练样本容易向小值样本集中,难以避免加权错误率低而真实错误率高的弱学习机,且迭代训练的速度较慢。针对这一问题,首先重新设计了相对误差函数和样本权重的更新方式;然后通过减少迭代训练中的样本规模提出了基... 传统AdaBoost.RT算法的训练样本容易向小值样本集中,难以避免加权错误率低而真实错误率高的弱学习机,且迭代训练的速度较慢。针对这一问题,首先重新设计了相对误差函数和样本权重的更新方式;然后通过减少迭代训练中的样本规模提出了基于权重的自适应样本剔除快速AdaBoost.RT算法;最后将AdaBoost.RT算法应用于航空发动机起动阶段状态趋势监控。实验结果表明,快速AdaBoost.RT算法预测误差均值减少了0. 128 4和0. 263 2,误差标准差减少了0. 022 3和1. 794 4,虚警次数减少了5次,训练速度提升了53%。实验表明,快速AdaBoost.RT算法能有效监控航空发动机起动阶段的状态趋势,具有预测误差小、训练速度快、虚警率低等优点,对提高装备维护效率具有一定的参考意义。 展开更多
关键词 AdaBoost.RT 时间序列 自适应样本剔除 集成学习 航空发动机 趋势监控
在线阅读 下载PDF
基于改进YOLOv5s的矿工排队检测方法 被引量:6
10
作者 郝明月 闵冰冰 +3 位作者 张新建 赵作鹏 吴晨 王欣 《工矿自动化》 CSCD 北大核心 2023年第11期160-166,共7页
传统的目标检测算法识别矿工排队异常行为时需人工提取特征,检测时间长、检测精度低;基于卷积神经网络的目标检测算法在检测速度和精度上有所提升,但在遮挡、昏暗和光照不均等场景下的检测效果难以保障。针对上述问题,提出了一种改进YOL... 传统的目标检测算法识别矿工排队异常行为时需人工提取特征,检测时间长、检测精度低;基于卷积神经网络的目标检测算法在检测速度和精度上有所提升,但在遮挡、昏暗和光照不均等场景下的检测效果难以保障。针对上述问题,提出了一种改进YOLOv5s(HPI-YOLOv5s)模型,并将其用于矿工排队检测。HPIYOLOv5s模型在YOLOv5s模型的基础上对路径聚合网络(PANet)进行改进,通过删除单个输入边节点、增加双向交叉路径,构建了一种双向交叉特征金字塔网络(BCrFPN)进行多尺度特征融合。鉴于手动设置阈值的标签分配策略鲁棒性不高,在自适应训练样本选择(ATSS)动态设置阈值的基础上,提出动态标签分配策略(ATSS_PLUS),更合理地评估候选样本的质量,动态设定每个真实目标的阈值,具有更高的检测精度和鲁棒性。通过半平面交法计算人脸框与所划定排队区域的相交面积,并将相交面积和人脸框面积之比与设置的阈值比较以判断矿工是否有序排队。实验结果表明:HPI-YOLOv5s模型比YOLOv5s模型的准确率提高了1.9%,权重大小减少了32%,参数量减少了6.9%,检测速度提高了7.8%,且针对遮挡、昏暗、光照不均的矿井图像,能够更准确地识别矿工排队情况。 展开更多
关键词 矿工排队检测 人脸检测 双向交叉特征金字塔网络 特征融合 自适应训练样本选择 动态标签分配
在线阅读 下载PDF
FCOSR:一种无锚框的SAR图像任意朝向船舶目标检测网络 被引量:10
11
作者 徐昌贵 张波 +3 位作者 高建威 吴樊 张红 王超 《雷达学报(中英文)》 EI CSCD 北大核心 2022年第3期345-356,共12页
以FCOS为代表的无锚框网络避免了预设锚框带来的超参设定问题,然而其水平框的输出结果无法指示任意朝向下SAR船舶目标的精确边界和朝向。针对此问题,该文提出了一种名为FCOSR的检测算法。首先在FCOS回归分支中添加角度参量使其输出旋转... 以FCOS为代表的无锚框网络避免了预设锚框带来的超参设定问题,然而其水平框的输出结果无法指示任意朝向下SAR船舶目标的精确边界和朝向。针对此问题,该文提出了一种名为FCOSR的检测算法。首先在FCOS回归分支中添加角度参量使其输出旋转框结果。其次,引入基于可形变卷积的9点特征参与船舶置信度和边界框残差值的预测来降低陆地虚警并提升边界框回归精度。最后,在训练阶段使用旋转自适应样本选择策略为每个船舶样本分配合适的正样本点,实现网络检测精度的提高。相较于FCOS以及目前已公开发表的锚框旋转检测网络,该网络在SSDD+和HRSID数据集上表现出更快的检测速率和更高的检测精度,mAP分别为91.7%和84.3%,影像切片平均检测时间仅需33 ms。 展开更多
关键词 任意朝向船舶检测 无锚框检测器 自适应样本选择策略 单阶段 合成孔径雷达
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部