期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种新的不平衡数据v-NSVDD多分类算法 被引量:3
1
作者 刘小平 徐桂云 +1 位作者 任世锦 杨茂云 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第2期150-158,共9页
分析了多类支持向量数据描述(support vector data description,SVDD)算法存在的问题,提出一种新的不平衡数据v-NSVDD多分类算法.该方法借鉴了v-SVM方法以及带有负类的SVDD的思想,并基于不同类别样本间隔最大原理,较好地克服噪声和在野... 分析了多类支持向量数据描述(support vector data description,SVDD)算法存在的问题,提出一种新的不平衡数据v-NSVDD多分类算法.该方法借鉴了v-SVM方法以及带有负类的SVDD的思想,并基于不同类别样本间隔最大原理,较好地克服噪声和在野点的影响,提高了分类模型的泛化性能;通过样本加权的方法解决了不平衡类别样本预测精度低的问题,并在理论上给出了根据类别样本数量设置样本加权系数的方法.针对实际应用存在大量复杂、非线性分类数据,通过核方法把上述线性分类算法推广到非线性数据分类情形.由于现有的多分类器无法实现拒判,而且每个分类器的核函数参数不同,导致数据点与各个超球中心距离的计算结果与实际距离不相符,影响了数据判决结果的准确性和可靠性.针对上述问题,给出基于相对距离和K-NN规则相结合的多分类方法,提高了分类结果的准确性和可靠性.使用Benchmark数据集进行仿真实验,结果表明本算法能够获得较低的分类误差,能够有效处理样本不平衡问题. 展开更多
关键词 支持向量数据描述(SVDD) 样本类别不平衡 多分类 拒判 超球软边界
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部