期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于样本分布特征的数据投毒防御 被引量:3
1
作者 杨立圣 罗文华 《计算机应用研究》 CSCD 北大核心 2023年第9期2845-2850,共6页
流量分类模型在更新过程中易受数据污染的干扰而降低模型性能,现有基于数据清洗的防御方法需依赖专家经验和人工筛选,且无法有效应对利用未知分布样本构造的投毒攻击。针对上述问题,受分布外检测和判别主动学习的启发,设计一种基于样本... 流量分类模型在更新过程中易受数据污染的干扰而降低模型性能,现有基于数据清洗的防御方法需依赖专家经验和人工筛选,且无法有效应对利用未知分布样本构造的投毒攻击。针对上述问题,受分布外检测和判别主动学习的启发,设计一种基于样本分布特征的数据投毒防御方法,通过二分类判别器筛选每轮新增样本中的已知及未知分布样本。对于新增的已知分布样本,通过模型预测与标注结果一致率评估新增样本的数据质量,决定是否进行模型更新;对于新增的未知分布样本,则利用基于标注正确率的少样本抽检评估样本可用性。实验结果表明,该方法在抵御数据投毒攻击的同时可以保证模型准确率,并有效识别利用未知分布样本构造的数据投毒攻击。 展开更多
关键词 AI安全 流量分类模型 数据投毒攻击 样本分布特征
在线阅读 下载PDF
基于样本集质量的建筑能耗预测机器学习算法选择及参数设置 被引量:5
2
作者 刘刚 李晓倩 韩臻 《重庆大学学报》 CSCD 北大核心 2022年第5期79-95,共17页
使用机器学习算法对建筑能耗进行预测正逐渐成为建筑设计初期重要的决策辅助工具,机器学习算法的选择及其参数设置一直是机器学习领域研究的热点和难点。但现有研究大多从算法原理角度进行预测模型的选择及参数设置,训练样本集的特征信... 使用机器学习算法对建筑能耗进行预测正逐渐成为建筑设计初期重要的决策辅助工具,机器学习算法的选择及其参数设置一直是机器学习领域研究的热点和难点。但现有研究大多从算法原理角度进行预测模型的选择及参数设置,训练样本集的特征信息未得到充分利用。为此,提出一种以样本量及样本分布特征为出发点的样本集质量分类方法,针对不同质量样本集测试不同机器学习算法的学习性能,制定不同质量样本集的算法选择及参数设置策略。分析样本特征与算法性能之间的关系,为建筑设计提供有效指导。 展开更多
关键词 建筑能耗预测 机器学习算法 样本分布特征
在线阅读 下载PDF
一种新的基于模糊聚类的组合分类器算法 被引量:3
3
作者 范莹 计华 张化祥 《计算机应用》 CSCD 北大核心 2008年第5期1204-1207,共4页
提出一种新的基于模糊聚类的组合分类器算法,该算法利用模糊聚类技术产生训练样本的分布特征,据此为每一个样本赋予一个权值,来确定它们被采样的概率,利用采样样本训练的分类器调整训练集的采样概率,依次生成新的分类器直至达到一定的... 提出一种新的基于模糊聚类的组合分类器算法,该算法利用模糊聚类技术产生训练样本的分布特征,据此为每一个样本赋予一个权值,来确定它们被采样的概率,利用采样样本训练的分类器调整训练集的采样概率,依次生成新的分类器直至达到一定的精度。该组合分类器算法在UCI的多个标准数据集上进行了测试,并与Bagging和AdaBoost算法进行了比较,实验结果表明新的算法具有更好的健壮性和更高的分类精度。 展开更多
关键词 分类器组合 模糊聚类 多样性 样本分布特征
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部