期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于校正光谱序列融合的小麦腥黑穗病籽粒分类方法
被引量:
3
1
作者
梁琨
宋金鹏
+3 位作者
张驰
梅秀明
陈赵越
张靖笛
《农业机械学报》
EI
CAS
CSCD
北大核心
2024年第5期263-272,共10页
针对小麦腥黑穗病轻度患病籽粒易与健康籽粒混淆,人工识别难度大的问题,将校正光谱序列融合技术与深度学习模型相结合,实现小麦腥黑穗病籽粒快速、精准分类。以健康、轻度患病、重度患病各300粒小麦籽粒的高光谱数据为样本,通过多元散...
针对小麦腥黑穗病轻度患病籽粒易与健康籽粒混淆,人工识别难度大的问题,将校正光谱序列融合技术与深度学习模型相结合,实现小麦腥黑穗病籽粒快速、精准分类。以健康、轻度患病、重度患病各300粒小麦籽粒的高光谱数据为样本,通过多元散射校正算法(MSC)和标准正态变换算法(SNV)对原始光谱进行预处理,并利用二维相关光谱法(2D-COS)分析SNV与MSC算法处理后的光谱之间的互补性。使用校正光谱序列融合技术将原始光谱、SNV预处理光谱与MSC预处理光谱三者进行融合得到序列融合光谱,以充分利用不同光谱预处理数据间的互补信息。最终,利用序列融合光谱数据建立基于ResNet 50算法的小麦腥黑病分类模型。试验结果表明,序列融合光谱ResNet 50模型总体准确率最高为93.89%,F1值为93.87%,分类性能优于单一预处理光谱建立的ResNet 50模型。为进一步评估模型分类效果,使用序列融合光谱分别建立偏最小二乘判别分析(PLS-DA)、支持向量机(SVM)以及集成学习算法模型随机森林(RF)与极端梯度提升树(XGBoost)模型,并进行对比,结果显示:SVM、PLS-DA、RF与XGBoost总体准确率分别为81.67%、84.44%、89.44%与90.55%,F1值分别为81.59%、84.04%、89.49%与90.59%,ResNet 50总体准确率与F1值优于传统光谱分析模型。因此,本研究表明校正光谱序列融合技术结合深度学习模型,能够实现对不同患病程度腥黑穗病籽粒的有效分类。
展开更多
关键词
小麦腥黑穗病
籽粒分类
校正光谱序列融合
二维相关
光谱
法
深度学习
在线阅读
下载PDF
职称材料
题名
基于校正光谱序列融合的小麦腥黑穗病籽粒分类方法
被引量:
3
1
作者
梁琨
宋金鹏
张驰
梅秀明
陈赵越
张靖笛
机构
南京农业大学人工智能学院
南京农业大学江苏省智能化农业装备重点实验室
南京农业大学工学院
南京市产品质量监督检验院国家市场监管重点实验室(生物毒素分析与评价)
出处
《农业机械学报》
EI
CAS
CSCD
北大核心
2024年第5期263-272,共10页
基金
江苏省自然科学基金面上项目(BK20221518)
江苏省农业科技自主创新资金项目(CX(23)1002)。
文摘
针对小麦腥黑穗病轻度患病籽粒易与健康籽粒混淆,人工识别难度大的问题,将校正光谱序列融合技术与深度学习模型相结合,实现小麦腥黑穗病籽粒快速、精准分类。以健康、轻度患病、重度患病各300粒小麦籽粒的高光谱数据为样本,通过多元散射校正算法(MSC)和标准正态变换算法(SNV)对原始光谱进行预处理,并利用二维相关光谱法(2D-COS)分析SNV与MSC算法处理后的光谱之间的互补性。使用校正光谱序列融合技术将原始光谱、SNV预处理光谱与MSC预处理光谱三者进行融合得到序列融合光谱,以充分利用不同光谱预处理数据间的互补信息。最终,利用序列融合光谱数据建立基于ResNet 50算法的小麦腥黑病分类模型。试验结果表明,序列融合光谱ResNet 50模型总体准确率最高为93.89%,F1值为93.87%,分类性能优于单一预处理光谱建立的ResNet 50模型。为进一步评估模型分类效果,使用序列融合光谱分别建立偏最小二乘判别分析(PLS-DA)、支持向量机(SVM)以及集成学习算法模型随机森林(RF)与极端梯度提升树(XGBoost)模型,并进行对比,结果显示:SVM、PLS-DA、RF与XGBoost总体准确率分别为81.67%、84.44%、89.44%与90.55%,F1值分别为81.59%、84.04%、89.49%与90.59%,ResNet 50总体准确率与F1值优于传统光谱分析模型。因此,本研究表明校正光谱序列融合技术结合深度学习模型,能够实现对不同患病程度腥黑穗病籽粒的有效分类。
关键词
小麦腥黑穗病
籽粒分类
校正光谱序列融合
二维相关
光谱
法
深度学习
Keywords
common bunt
wheat kernel classification
series fusion of scatter correction
two-dimensional correlation spectroscopy
deep learning
分类号
S512.1 [农业科学—作物学]
S41-30 [农业科学—植物保护]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于校正光谱序列融合的小麦腥黑穗病籽粒分类方法
梁琨
宋金鹏
张驰
梅秀明
陈赵越
张靖笛
《农业机械学报》
EI
CAS
CSCD
北大核心
2024
3
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部