针对集成电路在21~23℃范围内近mK量级测温精度的需求,研究了负温度系数(negtive temperature coefficient,NTC)热敏电阻温度计的校准方法对集成电路测温系统精度的影响。利用比较法对24支3种不同型号的NTC热敏电阻温度计进行校准,使用...针对集成电路在21~23℃范围内近mK量级测温精度的需求,研究了负温度系数(negtive temperature coefficient,NTC)热敏电阻温度计的校准方法对集成电路测温系统精度的影响。利用比较法对24支3种不同型号的NTC热敏电阻温度计进行校准,使用最小二乘法进行基本方程、Hoge-1方程、Steinhart-Hart方程的系数计算,分析校准方程的内插残差,评价低阶精准校准方程的可行性,为集成电路制作工艺的高质量中的温度测控提供技术支撑。结果表明:基本方程、Steinhart-Hart方程、Hoge-1方程残差的标准偏差分别为2.29、0.63、0.65 mK;使用2个校准点的基本方程的性能最差,使用3个校准点的校准方程的Hoge-1方程表现出最好的内插性能,在集成电路窄温区温度精确测量方面具有较高的应用价值。展开更多
In this paper, a novel calibration integral equation is derived for resolving double-sided, two-probe inverse heat conduction problem of surface heat flux estimation. In contrast to the conventional inverse heat condu...In this paper, a novel calibration integral equation is derived for resolving double-sided, two-probe inverse heat conduction problem of surface heat flux estimation. In contrast to the conventional inverse heat conduction techniques, this calibration approach does not require explicit input of the probe locations, thermophysical properties of the host material and temperature sensor parameters related to thermal contact resistance, sensor capacitance and conductive lead losses. All those parameters and properties are inherently contained in the calibration framework in terms of Volterra integral equation of the first kind. The Laplace transform technique is applied and the frequency domain manipulations of the heat equation are performed for deriving the calibration integral equation. Due to the ill-posed nature, regularization is required for the inverse heat conduction problem, a future-time method or singular value decomposition (SVD) can be used for stabilizing the ill-posed Volterra integral equation of the first kind.展开更多
文摘针对集成电路在21~23℃范围内近mK量级测温精度的需求,研究了负温度系数(negtive temperature coefficient,NTC)热敏电阻温度计的校准方法对集成电路测温系统精度的影响。利用比较法对24支3种不同型号的NTC热敏电阻温度计进行校准,使用最小二乘法进行基本方程、Hoge-1方程、Steinhart-Hart方程的系数计算,分析校准方程的内插残差,评价低阶精准校准方程的可行性,为集成电路制作工艺的高质量中的温度测控提供技术支撑。结果表明:基本方程、Steinhart-Hart方程、Hoge-1方程残差的标准偏差分别为2.29、0.63、0.65 mK;使用2个校准点的基本方程的性能最差,使用3个校准点的校准方程的Hoge-1方程表现出最好的内插性能,在集成电路窄温区温度精确测量方面具有较高的应用价值。
文摘In this paper, a novel calibration integral equation is derived for resolving double-sided, two-probe inverse heat conduction problem of surface heat flux estimation. In contrast to the conventional inverse heat conduction techniques, this calibration approach does not require explicit input of the probe locations, thermophysical properties of the host material and temperature sensor parameters related to thermal contact resistance, sensor capacitance and conductive lead losses. All those parameters and properties are inherently contained in the calibration framework in terms of Volterra integral equation of the first kind. The Laplace transform technique is applied and the frequency domain manipulations of the heat equation are performed for deriving the calibration integral equation. Due to the ill-posed nature, regularization is required for the inverse heat conduction problem, a future-time method or singular value decomposition (SVD) can be used for stabilizing the ill-posed Volterra integral equation of the first kind.