期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于树结构Parzen估计器优化集成学习的短期负荷预测方法
1
作者 罗敏 杨劲锋 +6 位作者 俞蕙 赖雨辰 郭杨运 周尚礼 向睿 童星 陈潇 《上海交通大学学报》 EI CAS CSCD 北大核心 2024年第6期819-825,共7页
短期负荷预测主要用于电力系统实时调度、日前发电计划的制定,对电力系统经济调度、系统的安全运行具有重要意义.国内外在采用智能模型进行短期负荷预测方面开展了大量研究,然而智能预测方法的预测效果较易受到现存方法结构及参数的影响... 短期负荷预测主要用于电力系统实时调度、日前发电计划的制定,对电力系统经济调度、系统的安全运行具有重要意义.国内外在采用智能模型进行短期负荷预测方面开展了大量研究,然而智能预测方法的预测效果较易受到现存方法结构及参数的影响,以及预测对象自身个性差异使得参数难以复用,如何精准快速地获取方法结构与参数成为短期负荷预测的关键难题.对此,提出基于树结构Parzen估计器优化集成学习的短期负荷预测方法,可对方法结构与参数进行快速寻优.将该方法应用于中国南方某省短期负荷预测,以实际算例验证了其对预测精度的有效提升. 展开更多
关键词 短期负荷预测 树结构parzen估计器 集成学习 超参优化
在线阅读 下载PDF
基于树结构Parzen估计器优化后两层Stacking模型的岩石脆性指数预测
2
作者 王芷含 温韬 《中国石油勘探》 2025年第2期115-132,共18页
目前岩石脆性指数的评价方法众多,主要基于矿物组分或岩石力学性质开展评价,但多数评价指标获取费用高昂、耗时长。采用机器学习的手段,提出一种基于Stacking集成学习思想的岩石脆性指数预测方法,并行训练梯度提升决策树模型(GBDT)、随... 目前岩石脆性指数的评价方法众多,主要基于矿物组分或岩石力学性质开展评价,但多数评价指标获取费用高昂、耗时长。采用机器学习的手段,提出一种基于Stacking集成学习思想的岩石脆性指数预测方法,并行训练梯度提升决策树模型(GBDT)、随机森林模型(RF)、朴素决策树模型(DT)、支持向量回归模型(SVR)以及LightGBM模型等,并加以树结构Parzen估计器对各模型进行超参数调优后,串行使用XGBoost模型对基模型训练结果进行融合,从而实现各参数的快速寻优和岩石脆性指数的预测。结果表明,基于树结构Parzen估计器优化后的两层Stacking模型预测结果与使用的基模型预测结果相比具有明显优势,其可释方差得分(EVS)最高达到0.97,决定系数(R2)最高达到0.967,在同样的数据集表现中,该模型平均绝对误差(MAE)和均方根误差(RMSE)均最小,表明该模型能够在有监督学习的技术背景下较好地拟合岩石脆性指数的变化规律,验证了其在预测岩石脆性指数方面具有一定的实用价值。 展开更多
关键词 岩石脆性指数 Stacking模型 集成学习 树结构parzen估计器
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部