期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
基于栈式降噪稀疏自动编码器的雷达目标识别方法 被引量:12
1
作者 赵飞翔 刘永祥 霍凯 《雷达学报(中英文)》 CSCD 2017年第2期149-156,共8页
雷达目标识别中特征提取是关键步骤,所提取特征的好坏决定着识别效果的优劣,但传统特征提取方法很难发掘目标数据深层次本质特征。深度学习理论中的自动编码器模型能够用数据去学习特征,获得数据不同层次的特征表达。同时为消除噪声影响... 雷达目标识别中特征提取是关键步骤,所提取特征的好坏决定着识别效果的优劣,但传统特征提取方法很难发掘目标数据深层次本质特征。深度学习理论中的自动编码器模型能够用数据去学习特征,获得数据不同层次的特征表达。同时为消除噪声影响,该文提出一种基于栈式降噪稀疏自动编码器的雷达目标识别方法,通过设置不同隐藏层数和迭代次数,从雷达数据中直接高效地提取识别所需的各层次特征。暗室仿真数据实验结果验证了该方法较K近邻分类方法及传统栈式自编码器有更好的识别效果。 展开更多
关键词 目标识别 深度学习 栈式降噪稀疏自动编码器
在线阅读 下载PDF
基于堆叠式降噪自动编码器和深度神经网络的风电调频逐步惯性智能控制 被引量:2
2
作者 王亚伦 周涛 +2 位作者 陈中 王毅 权浩 《上海交通大学学报》 EI CAS CSCD 北大核心 2023年第11期1477-1491,共15页
风电调频的逐步惯性控制(SIC)策略在负荷波动后提供一个阶跃式功率增发,能够有效阻止系统频率下降,保障电网频率安全.但在其功率恢复阶段,容易出现二次频率跌落现象,需优化SIC以获得更好的调频效果.传统方法存在计算维度高和耗时较长的... 风电调频的逐步惯性控制(SIC)策略在负荷波动后提供一个阶跃式功率增发,能够有效阻止系统频率下降,保障电网频率安全.但在其功率恢复阶段,容易出现二次频率跌落现象,需优化SIC以获得更好的调频效果.传统方法存在计算维度高和耗时较长的弊端,难以满足不同场景下快速提供最优控制效果的需求.为实现负荷扰动事件下风电调频的最优逐步惯性快速控制,引入深度学习算法,提出一种基于堆叠式降噪自动编码器(SDAE)和深度神经网络(DNN)的风电调频逐步惯性智能控制方法.首先,使用麻雀搜索算法获得最优参数,使用SDAE高效提取数据特征;随后,基于DNN对数据特征进行学习,并引入加速自适应矩估计优化网络参数,提升网络全局最优参数;最后,应用SDAE-DNN联合方法实现扰动事件后风电调频的逐步惯性在线控制.在IEEE 30节点测试系统中分别对单台风力机和风电场进行仿真分析,与传统方法、浅层反向传播神经网络及原始DNN所得结果对比发现,所提网络结构具有更优的预测精度和泛化能力,该方法能够实现良好的逐步惯性调频效果. 展开更多
关键词 逐步惯性控制 二次频率跌落 麻雀搜索算法 堆叠自动编码器 深度神经网络
在线阅读 下载PDF
栈式降噪自编码器在辐射源信号识别中的应用 被引量:3
3
作者 叶文强 俞志富 +1 位作者 张奎 王虎帮 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2019年第6期47-53,共7页
针对传统辐射源信号识别方法在低信噪比条件下提取特征困难且识别率低的问题,提出了一种基于短时傅里叶(STFT)变换和栈式降噪自编码器(sDAE)的识别系统。首先对雷达辐射源信号进行短时傅里叶变化,然后对时频图像进行一系列预处理,将处... 针对传统辐射源信号识别方法在低信噪比条件下提取特征困难且识别率低的问题,提出了一种基于短时傅里叶(STFT)变换和栈式降噪自编码器(sDAE)的识别系统。首先对雷达辐射源信号进行短时傅里叶变化,然后对时频图像进行一系列预处理,将处理后的图像输入到栈式降噪自编码器中,将提取的特征输入到softmax分类器中,完成分类识别。通过仿真表明:该系统在SNR=-10 dB的时候,识别率能够达到80%以上,在低信噪比的情况下,识别效果明显优于传统识别方法。 展开更多
关键词 雷达辐射源 短时傅里叶 图像预处理 编码器 分类器
在线阅读 下载PDF
基于栈式稀疏自编码器的新型干扰识别 被引量:4
4
作者 杨兴宇 阮怀林 《现代雷达》 CSCD 北大核心 2018年第5期21-27,共7页
为了有效应对频谱弥散干扰(SMSP)和切片组合干扰(C&I)两种新型干扰,提出了一种基于栈式稀疏自编码器的识别算法。该算法首先对于扰与否的雷达接收信号进行双谱分析;然后对双谱特征进行降维,得到高维样本。预训练阶段,构造稀疏... 为了有效应对频谱弥散干扰(SMSP)和切片组合干扰(C&I)两种新型干扰,提出了一种基于栈式稀疏自编码器的识别算法。该算法首先对于扰与否的雷达接收信号进行双谱分析;然后对双谱特征进行降维,得到高维样本。预训练阶段,构造稀疏自编码器神经网络模型进行无标签样本的预训练;然后根据有标签数据对该模型参数进行有监督微调;最后利用Softmax分类器完成新型干扰的识别。仿真实验证明该方法有较高的识别率,特别是相较于其他文献方法,该方法受信噪比影响最小且识别效果最佳。说明了深度学习方法应用于雷达新型干扰信号识别领域的可行性和优越性。 展开更多
关键词 新型干扰 干扰识别 双谱分析 稀疏编码器
在线阅读 下载PDF
稀疏平衡变分自动编码器的文本特征提取 被引量:1
5
作者 车蕾 《国防科技大学学报》 EI CAS CSCD 北大核心 2022年第1期169-178,共10页
针对文本特征提取方面的高维数据特征区分度较低、基于规则的特征学习的自学习性能差、变分自动编码器存在过度剪枝等问题,提出稀疏平衡变分自动编码器(Sparse Balanced Variational AutoEncoder,SBVAE)的文本特征提取模型。为消除噪声... 针对文本特征提取方面的高维数据特征区分度较低、基于规则的特征学习的自学习性能差、变分自动编码器存在过度剪枝等问题,提出稀疏平衡变分自动编码器(Sparse Balanced Variational AutoEncoder,SBVAE)的文本特征提取模型。为消除噪声干扰,提高文本特征提取模型的鲁棒性,在文本特征提取的输入层采用双向降噪处理机制。提出一种稀疏平衡性处理,结合KL(Kullback-Leibler)项权重的模拟退火算法以缓解KL散度引发的过度剪枝的影响,强制解码器更充分地利用潜变量。此模型提高了高维数据特征的区分度。从对比分析文本特征提取模型、稀疏性能、稀疏平衡处理对隐藏空间变分下界的影响等方面深入开展实验,验证了该模型具有较好的性能。该模型在复旦数据集和Reuters数据集上的最高准确率相较于主成分分析分别提升了12.36%、8.06%。 展开更多
关键词 变分自动编码器 稀疏平衡 过度剪枝
在线阅读 下载PDF
面向中文语音情感识别的改进栈式自编码结构 被引量:6
6
作者 朱芳枚 赵力 +2 位作者 梁瑞宇 王青云 邹采荣 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第4期631-636,共6页
为进一步提高汉语语音情感识别率,基于深度学习中的自编码、降噪自编码及稀疏自编码的网络结构,提出了一种改进的栈式自编码结构.该结构第1层使用降噪自编码学习一个比输入特征维数更大的隐藏特征,第2层采用稀疏自编码学习稀疏性特征,... 为进一步提高汉语语音情感识别率,基于深度学习中的自编码、降噪自编码及稀疏自编码的网络结构,提出了一种改进的栈式自编码结构.该结构第1层使用降噪自编码学习一个比输入特征维数更大的隐藏特征,第2层采用稀疏自编码学习稀疏性特征,最后使用softmax分类器进行分类识别.训练过程首先采用逐层预训练的方法,达到网络参数全面初始化的目的,然后对整个网络进行微调.在中文语音库上的情感识别实验显示,相较于单独使用栈式降噪或稀疏自编码,所提结构具有更好的识别效果.此外,基于CASIA库的对比实验显示,该结构比K近邻算法、稀疏表示方法、传统支持向量机和人工神经网络识别率分别提高了53.7%,29.8%,14.3%和1.9%.在自行录制的语音库中,该结构的识别率比人工神经网络提高了1.64%. 展开更多
关键词 语音情感识别 改进的编码 编码 稀疏编码
在线阅读 下载PDF
基于栈式降维与字典学习的辐射源调制识别 被引量:2
7
作者 李东瑾 杨瑞娟 +2 位作者 李晓柏 朱晟坤 费太勇 《兵工学报》 EI CAS CSCD 北大核心 2020年第10期2023-2032,共10页
针对低信噪比环境下辐射源调制识别准确率和时效性不高问题,提出一种基于时频特征、栈式降维和字典学习的分类识别系统。对时域信号进行时频变换和稀疏域降噪,获取二维时频特征并降低噪声干扰;基于无监督学习的栈式降维网络提取低维非... 针对低信噪比环境下辐射源调制识别准确率和时效性不高问题,提出一种基于时频特征、栈式降维和字典学习的分类识别系统。对时域信号进行时频变换和稀疏域降噪,获取二维时频特征并降低噪声干扰;基于无监督学习的栈式降维网络提取低维非线性特征,进而降低特征冗余并提高后续处理时效性;通过多项判别约束和正则约束强化字典类间判别能力与分类时效性,并实现调制类型识别。仿真结果验证了该分类识别系统的有效性和可行性:当信噪比为-8 dB时,单载频信号、二相频率编码信号、四相频率编码信号、线性调频信号、二相编码信号、四相编码信号、Frank信号7类辐射源信号的整体平均识别率达到95.93%,具备较强的鲁棒性和时效性。 展开更多
关键词 辐射源调制识别 字典学习 稀疏 正则约束 时频特征
在线阅读 下载PDF
基于深度学习的兵棋演习数据特征提取方法研究 被引量:21
8
作者 郑书奎 吴琳 贺筱媛 《指挥与控制学报》 2016年第3期194-201,共8页
为使基于机器学习的兵棋演习战场态势分析理解取得更好结果,围绕兵棋演习数据特征提取问题,以深度学习方法为手段,提出了一种栈式稀疏降噪自编码网络模型,输入真实的兵棋演习数据进行了特征提取实验,通过分类精度表征了方法的效果,并进... 为使基于机器学习的兵棋演习战场态势分析理解取得更好结果,围绕兵棋演习数据特征提取问题,以深度学习方法为手段,提出了一种栈式稀疏降噪自编码网络模型,输入真实的兵棋演习数据进行了特征提取实验,通过分类精度表征了方法的效果,并进行了多种不同方法的对比实验,证明了深度学习方法的优势. 展开更多
关键词 深度学习 兵棋演习数据 特征提取 稀疏编码网络
在线阅读 下载PDF
基于深度学习的短时交通流预测 被引量:4
9
作者 李莹 李晓霞 《公路工程》 2021年第3期314-319,共6页
精确的交通流预测是智能运输系统的重要技术支撑,以实际交通流数据为背景,提出了一种新型的基于深度学习的交通流预测模型。将若干个降噪自编码器(DAE)进行堆叠,组成栈式降噪自编码器模型(SDAE),完成了深度学习框架的构建。进一步通过... 精确的交通流预测是智能运输系统的重要技术支撑,以实际交通流数据为背景,提出了一种新型的基于深度学习的交通流预测模型。将若干个降噪自编码器(DAE)进行堆叠,组成栈式降噪自编码器模型(SDAE),完成了深度学习框架的构建。进一步通过在顶层结构中增加标准预测模型,实现了基于深度学习的预测模型的搭建。结合实际交通流数据,开展了多个预测模型的实验对比。结果表明,考虑多维时空因素的SDAE预测精度更高,证明了模型的优越性。 展开更多
关键词 智能运输系统 编码器 交通流预测 深度学习
在线阅读 下载PDF
基于SDAE与CART联合智能算法的通信网络用户满意度分析方法 被引量:1
10
作者 李露 于忠义 李福昌 《信息通信技术》 2020年第2期12-18,共7页
论文提出一种基于栈式降噪自编码器(Stacked Denoising Autoencoder,SDAE)与分类和回归决策树(Classification and Regression Tree,CART)的移动互联网满意度预测方法,此模型能挖掘出用户的满意度与用户的特征和网络特征的关联规则,通... 论文提出一种基于栈式降噪自编码器(Stacked Denoising Autoencoder,SDAE)与分类和回归决策树(Classification and Regression Tree,CART)的移动互联网满意度预测方法,此模型能挖掘出用户的满意度与用户的特征和网络特征的关联规则,通过这种规则能更精准及时地预测到用户满意度的变化,以便运营商针对这种变化提前作出决策。论文所提方法能够挖掘特征间的深层关系,通过SDAE编码样本可以获得影响用户体验的隐含特征,及时发现用户对于网络贬损的真正痛点,为运营商网络建设和运行维护部门制定提升用户的网络感知策略提供依据,从而提升用户体验。 展开更多
关键词 编码器 分类和回归决策树 人工智能 移动互联网 满意度
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部