针对现有的显著性检测算法检测目标类型单一、通用性差的问题,提出一种基于无监督栈式降噪自编码网络的显著性检测算法.该算法利用无监督栈式降噪自编码网络(Stacked Denoising Auto Encoder,SDAE)在多个尺度对原始图像进行稀疏重构,将...针对现有的显著性检测算法检测目标类型单一、通用性差的问题,提出一种基于无监督栈式降噪自编码网络的显著性检测算法.该算法利用无监督栈式降噪自编码网络(Stacked Denoising Auto Encoder,SDAE)在多个尺度对原始图像进行稀疏重构,将原始图像与SDAE网络重构图像之间的差作为显著图,二值化后的显著图作为显著性目标检测结果.在SDAE网络训练过程中,将原始图像作为原始数据,网络重构的图像作为观察数据.为了提升网络训练效率,首先利用无监督逐层贪婪方法训练同结构的深度信念网络(Deep Belief Network,DBN),将训练得到的DBN网络参数设为SDAE网络的初始参数,再计算原始数据与观察数据之间的互信息作为网络收敛代价,利用反向传播进行网络参数微调.实验表明,该网络模型可以完成多类型目标的显著性检测,具有通用性好,准确度高等优点.展开更多
为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dim...为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dimensionality reduction,IRFD),进而缓解传统机器学习入侵检测模型的低准确率问题。IRFD采用堆叠降噪稀疏自编码器策略对数据进行降维,从而提取有效特征。利用卷积注意力机制对残差网络进行改进,构建能提取关键特征的分类网络,并利用两个典型的入侵检测数据集验证IRFD的检测性能。实验结果表明,IRFD在数据集UNSW-NB15和CICIDS 2017上的准确率均达到99%以上,且F1-score分别为99.5%和99.7%。与基线模型相比,提出的IRFD在准确率、精确率和F1-score性能上均有较大提升。展开更多
文摘为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dimensionality reduction,IRFD),进而缓解传统机器学习入侵检测模型的低准确率问题。IRFD采用堆叠降噪稀疏自编码器策略对数据进行降维,从而提取有效特征。利用卷积注意力机制对残差网络进行改进,构建能提取关键特征的分类网络,并利用两个典型的入侵检测数据集验证IRFD的检测性能。实验结果表明,IRFD在数据集UNSW-NB15和CICIDS 2017上的准确率均达到99%以上,且F1-score分别为99.5%和99.7%。与基线模型相比,提出的IRFD在准确率、精确率和F1-score性能上均有较大提升。