期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
基于栈式降噪稀疏自动编码器的雷达目标识别方法 被引量:12
1
作者 赵飞翔 刘永祥 霍凯 《雷达学报(中英文)》 CSCD 2017年第2期149-156,共8页
雷达目标识别中特征提取是关键步骤,所提取特征的好坏决定着识别效果的优劣,但传统特征提取方法很难发掘目标数据深层次本质特征。深度学习理论中的自动编码器模型能够用数据去学习特征,获得数据不同层次的特征表达。同时为消除噪声影响... 雷达目标识别中特征提取是关键步骤,所提取特征的好坏决定着识别效果的优劣,但传统特征提取方法很难发掘目标数据深层次本质特征。深度学习理论中的自动编码器模型能够用数据去学习特征,获得数据不同层次的特征表达。同时为消除噪声影响,该文提出一种基于栈式降噪稀疏自动编码器的雷达目标识别方法,通过设置不同隐藏层数和迭代次数,从雷达数据中直接高效地提取识别所需的各层次特征。暗室仿真数据实验结果验证了该方法较K近邻分类方法及传统栈式自编码器有更好的识别效果。 展开更多
关键词 目标识别 深度学习 稀疏自动编码
在线阅读 下载PDF
基于无监督栈式降噪自编码网络的显著性检测算法 被引量:9
2
作者 李庆武 马云鹏 +1 位作者 周亚琴 邢俊 《电子学报》 EI CAS CSCD 北大核心 2019年第4期871-879,共9页
针对现有的显著性检测算法检测目标类型单一、通用性差的问题,提出一种基于无监督栈式降噪自编码网络的显著性检测算法.该算法利用无监督栈式降噪自编码网络(Stacked Denoising Auto Encoder,SDAE)在多个尺度对原始图像进行稀疏重构,将... 针对现有的显著性检测算法检测目标类型单一、通用性差的问题,提出一种基于无监督栈式降噪自编码网络的显著性检测算法.该算法利用无监督栈式降噪自编码网络(Stacked Denoising Auto Encoder,SDAE)在多个尺度对原始图像进行稀疏重构,将原始图像与SDAE网络重构图像之间的差作为显著图,二值化后的显著图作为显著性目标检测结果.在SDAE网络训练过程中,将原始图像作为原始数据,网络重构的图像作为观察数据.为了提升网络训练效率,首先利用无监督逐层贪婪方法训练同结构的深度信念网络(Deep Belief Network,DBN),将训练得到的DBN网络参数设为SDAE网络的初始参数,再计算原始数据与观察数据之间的互信息作为网络收敛代价,利用反向传播进行网络参数微调.实验表明,该网络模型可以完成多类型目标的显著性检测,具有通用性好,准确度高等优点. 展开更多
关键词 显著性检测 无监督网络 自编码 深度信念网络 互信息
在线阅读 下载PDF
一种基于自编码器降维的神经卷积网络入侵检测模型
3
作者 孙敬 丁嘉伟 冯光辉 《电信科学》 北大核心 2025年第2期129-138,共10页
为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dim... 为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dimensionality reduction,IRFD),进而缓解传统机器学习入侵检测模型的低准确率问题。IRFD采用堆叠降噪稀疏自编码器策略对数据进行降维,从而提取有效特征。利用卷积注意力机制对残差网络进行改进,构建能提取关键特征的分类网络,并利用两个典型的入侵检测数据集验证IRFD的检测性能。实验结果表明,IRFD在数据集UNSW-NB15和CICIDS 2017上的准确率均达到99%以上,且F1-score分别为99.5%和99.7%。与基线模型相比,提出的IRFD在准确率、精确率和F1-score性能上均有较大提升。 展开更多
关键词 网络攻击 入侵检测模型 堆叠稀疏自编码 卷积注意力机制 残差网络
在线阅读 下载PDF
基于堆叠式降噪自动编码器和深度神经网络的风电调频逐步惯性智能控制 被引量:2
4
作者 王亚伦 周涛 +2 位作者 陈中 王毅 权浩 《上海交通大学学报》 EI CAS CSCD 北大核心 2023年第11期1477-1491,共15页
风电调频的逐步惯性控制(SIC)策略在负荷波动后提供一个阶跃式功率增发,能够有效阻止系统频率下降,保障电网频率安全.但在其功率恢复阶段,容易出现二次频率跌落现象,需优化SIC以获得更好的调频效果.传统方法存在计算维度高和耗时较长的... 风电调频的逐步惯性控制(SIC)策略在负荷波动后提供一个阶跃式功率增发,能够有效阻止系统频率下降,保障电网频率安全.但在其功率恢复阶段,容易出现二次频率跌落现象,需优化SIC以获得更好的调频效果.传统方法存在计算维度高和耗时较长的弊端,难以满足不同场景下快速提供最优控制效果的需求.为实现负荷扰动事件下风电调频的最优逐步惯性快速控制,引入深度学习算法,提出一种基于堆叠式降噪自动编码器(SDAE)和深度神经网络(DNN)的风电调频逐步惯性智能控制方法.首先,使用麻雀搜索算法获得最优参数,使用SDAE高效提取数据特征;随后,基于DNN对数据特征进行学习,并引入加速自适应矩估计优化网络参数,提升网络全局最优参数;最后,应用SDAE-DNN联合方法实现扰动事件后风电调频的逐步惯性在线控制.在IEEE 30节点测试系统中分别对单台风力机和风电场进行仿真分析,与传统方法、浅层反向传播神经网络及原始DNN所得结果对比发现,所提网络结构具有更优的预测精度和泛化能力,该方法能够实现良好的逐步惯性调频效果. 展开更多
关键词 逐步惯性控制 二次频率跌落 麻雀搜索算法 堆叠噪自编码 深度神经网络
在线阅读 下载PDF
栈式降噪自编码器在辐射源信号识别中的应用 被引量:3
5
作者 叶文强 俞志富 +1 位作者 张奎 王虎帮 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2019年第6期47-53,共7页
针对传统辐射源信号识别方法在低信噪比条件下提取特征困难且识别率低的问题,提出了一种基于短时傅里叶(STFT)变换和栈式降噪自编码器(sDAE)的识别系统。首先对雷达辐射源信号进行短时傅里叶变化,然后对时频图像进行一系列预处理,将处... 针对传统辐射源信号识别方法在低信噪比条件下提取特征困难且识别率低的问题,提出了一种基于短时傅里叶(STFT)变换和栈式降噪自编码器(sDAE)的识别系统。首先对雷达辐射源信号进行短时傅里叶变化,然后对时频图像进行一系列预处理,将处理后的图像输入到栈式降噪自编码器中,将提取的特征输入到softmax分类器中,完成分类识别。通过仿真表明:该系统在SNR=-10 dB的时候,识别率能够达到80%以上,在低信噪比的情况下,识别效果明显优于传统识别方法。 展开更多
关键词 雷达辐射源 短时傅里叶 图像预处理 自编码 分类器
在线阅读 下载PDF
基于栈式稀疏自编码器的新型干扰识别 被引量:4
6
作者 杨兴宇 阮怀林 《现代雷达》 CSCD 北大核心 2018年第5期21-27,共7页
为了有效应对频谱弥散干扰(SMSP)和切片组合干扰(C&I)两种新型干扰,提出了一种基于栈式稀疏自编码器的识别算法。该算法首先对于扰与否的雷达接收信号进行双谱分析;然后对双谱特征进行降维,得到高维样本。预训练阶段,构造稀疏... 为了有效应对频谱弥散干扰(SMSP)和切片组合干扰(C&I)两种新型干扰,提出了一种基于栈式稀疏自编码器的识别算法。该算法首先对于扰与否的雷达接收信号进行双谱分析;然后对双谱特征进行降维,得到高维样本。预训练阶段,构造稀疏自编码器神经网络模型进行无标签样本的预训练;然后根据有标签数据对该模型参数进行有监督微调;最后利用Softmax分类器完成新型干扰的识别。仿真实验证明该方法有较高的识别率,特别是相较于其他文献方法,该方法受信噪比影响最小且识别效果最佳。说明了深度学习方法应用于雷达新型干扰信号识别领域的可行性和优越性。 展开更多
关键词 新型干扰 干扰识别 双谱分析 稀疏自编码
在线阅读 下载PDF
面向中文语音情感识别的改进栈式自编码结构 被引量:6
7
作者 朱芳枚 赵力 +2 位作者 梁瑞宇 王青云 邹采荣 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第4期631-636,共6页
为进一步提高汉语语音情感识别率,基于深度学习中的自编码、降噪自编码及稀疏自编码的网络结构,提出了一种改进的栈式自编码结构.该结构第1层使用降噪自编码学习一个比输入特征维数更大的隐藏特征,第2层采用稀疏自编码学习稀疏性特征,... 为进一步提高汉语语音情感识别率,基于深度学习中的自编码、降噪自编码及稀疏自编码的网络结构,提出了一种改进的栈式自编码结构.该结构第1层使用降噪自编码学习一个比输入特征维数更大的隐藏特征,第2层采用稀疏自编码学习稀疏性特征,最后使用softmax分类器进行分类识别.训练过程首先采用逐层预训练的方法,达到网络参数全面初始化的目的,然后对整个网络进行微调.在中文语音库上的情感识别实验显示,相较于单独使用栈式降噪或稀疏自编码,所提结构具有更好的识别效果.此外,基于CASIA库的对比实验显示,该结构比K近邻算法、稀疏表示方法、传统支持向量机和人工神经网络识别率分别提高了53.7%,29.8%,14.3%和1.9%.在自行录制的语音库中,该结构的识别率比人工神经网络提高了1.64%. 展开更多
关键词 语音情感识别 改进的自编码 自编码 稀疏自编码
在线阅读 下载PDF
基于栈式降维与字典学习的辐射源调制识别 被引量:2
8
作者 李东瑾 杨瑞娟 +2 位作者 李晓柏 朱晟坤 费太勇 《兵工学报》 EI CAS CSCD 北大核心 2020年第10期2023-2032,共10页
针对低信噪比环境下辐射源调制识别准确率和时效性不高问题,提出一种基于时频特征、栈式降维和字典学习的分类识别系统。对时域信号进行时频变换和稀疏域降噪,获取二维时频特征并降低噪声干扰;基于无监督学习的栈式降维网络提取低维非... 针对低信噪比环境下辐射源调制识别准确率和时效性不高问题,提出一种基于时频特征、栈式降维和字典学习的分类识别系统。对时域信号进行时频变换和稀疏域降噪,获取二维时频特征并降低噪声干扰;基于无监督学习的栈式降维网络提取低维非线性特征,进而降低特征冗余并提高后续处理时效性;通过多项判别约束和正则约束强化字典类间判别能力与分类时效性,并实现调制类型识别。仿真结果验证了该分类识别系统的有效性和可行性:当信噪比为-8 dB时,单载频信号、二相频率编码信号、四相频率编码信号、线性调频信号、二相编码信号、四相编码信号、Frank信号7类辐射源信号的整体平均识别率达到95.93%,具备较强的鲁棒性和时效性。 展开更多
关键词 辐射源调制识别 字典学习 稀疏 正则约束 时频特征
在线阅读 下载PDF
降噪自编码器辅助的下行MIMO-SCMA编解码方法 被引量:1
9
作者 蒋芳 黄兴 +3 位作者 胡梦钰 王翊 许耀华 胡艳军 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2022年第3期74-82,共9页
为了改善稀疏码分多址系统在多天线应用中的误码率性能,将深度学习引入多输入多输出稀疏码分多址系统,提出了一种降噪自编码器辅助的编解码方法。发射端使用多个深度神经网络单元构建多天线稀疏码分多址编码器,通过神经网络的学习获得... 为了改善稀疏码分多址系统在多天线应用中的误码率性能,将深度学习引入多输入多输出稀疏码分多址系统,提出了一种降噪自编码器辅助的编解码方法。发射端使用多个深度神经网络单元构建多天线稀疏码分多址编码器,通过神经网络的学习获得每个用户在不同发射天线上的码本,采用降噪自编码器的结构在输入端引入噪声层,使得编码器的输出为更具鲁棒性的特征表示;接收端设计了一个全链接的深度神经网络作为解码器,该解码器将多天线检测与多用户检测联合进行,一次解码即可获得用户数据;采用端到端的训练方式对编解码器进行训练,优化神经网络的结构与参数,使得神经网络能够快速收敛。实验结果表明,提出的编解码方法可以降低多输入多输出稀疏码分多址系统的误码率,同时减少接收端检测的时间。 展开更多
关键词 多输入多输出 稀疏码分多址 自编码 深度神经网络
在线阅读 下载PDF
基于混合神经网络的协同过滤推荐模型 被引量:6
10
作者 马鑫 吴云 鹿泽光 《应用科学学报》 CAS CSCD 北大核心 2020年第3期478-487,共10页
数据稀疏性是推荐系统中严重影响推荐结果准确性的重要因素之一.针对数据稀疏性提出了融合卷积神经网络(convolutional neural network, CNN)和降噪自编码(denoising auto-encoder, DAE)神经网络混合的神经网络评分预测模型(convolution... 数据稀疏性是推荐系统中严重影响推荐结果准确性的重要因素之一.针对数据稀疏性提出了融合卷积神经网络(convolutional neural network, CNN)和降噪自编码(denoising auto-encoder, DAE)神经网络混合的神经网络评分预测模型(convolutional-denosing autoencoder, CDAE)对用户未评分项目进行预测评分,从而解决数据稀疏性问题.首先将向量化后的用户评论数据通过卷积神经网络训练得到用户特征向量矩阵,其次将用户特征向量矩阵作为降噪自编码神经网络的初始权重,结合用户评分数据经过降噪自编码神经网络训练,得到用户-项目预测评分,然后在此基础上进行基于用户的协同过滤推荐.最后使用movielens-1M实验数据集对比验证了提出的混合神经网络协同过滤推荐(convolutional-denosing autoencoder collaborative filtering, CDAECF)模型.实验证明,所提出的CDAECF模型能够有效地结合隐性反馈和显性反馈数据,具有较高的推荐准确率. 展开更多
关键词 卷积神经网络 自编码神经网络 协同过滤 稀疏
在线阅读 下载PDF
基于SDAE与CART联合智能算法的通信网络用户满意度分析方法 被引量:1
11
作者 李露 于忠义 李福昌 《信息通信技术》 2020年第2期12-18,共7页
论文提出一种基于栈式降噪自编码器(Stacked Denoising Autoencoder,SDAE)与分类和回归决策树(Classification and Regression Tree,CART)的移动互联网满意度预测方法,此模型能挖掘出用户的满意度与用户的特征和网络特征的关联规则,通... 论文提出一种基于栈式降噪自编码器(Stacked Denoising Autoencoder,SDAE)与分类和回归决策树(Classification and Regression Tree,CART)的移动互联网满意度预测方法,此模型能挖掘出用户的满意度与用户的特征和网络特征的关联规则,通过这种规则能更精准及时地预测到用户满意度的变化,以便运营商针对这种变化提前作出决策。论文所提方法能够挖掘特征间的深层关系,通过SDAE编码样本可以获得影响用户体验的隐含特征,及时发现用户对于网络贬损的真正痛点,为运营商网络建设和运行维护部门制定提升用户的网络感知策略提供依据,从而提升用户体验。 展开更多
关键词 自编码 分类和回归决策树 人工智能 移动互联网 满意度
在线阅读 下载PDF
基于深度学习的兵棋演习数据特征提取方法研究 被引量:21
12
作者 郑书奎 吴琳 贺筱媛 《指挥与控制学报》 2016年第3期194-201,共8页
为使基于机器学习的兵棋演习战场态势分析理解取得更好结果,围绕兵棋演习数据特征提取问题,以深度学习方法为手段,提出了一种栈式稀疏降噪自编码网络模型,输入真实的兵棋演习数据进行了特征提取实验,通过分类精度表征了方法的效果,并进... 为使基于机器学习的兵棋演习战场态势分析理解取得更好结果,围绕兵棋演习数据特征提取问题,以深度学习方法为手段,提出了一种栈式稀疏降噪自编码网络模型,输入真实的兵棋演习数据进行了特征提取实验,通过分类精度表征了方法的效果,并进行了多种不同方法的对比实验,证明了深度学习方法的优势. 展开更多
关键词 深度学习 兵棋演习数据 特征提取 栈式稀疏降噪自编码网络
在线阅读 下载PDF
基于SSAE-IARO-BiLSTM的工业过程故障诊断研究
13
作者 张瑞成 孙伟良 梁卫征 《振动与冲击》 EI CSCD 北大核心 2024年第15期244-250,260,共8页
针对工业过程故障诊断精度低的问题,提出了一种基于栈式稀疏自编码网络(stacked sparse auto-encoder network, SSAE)和改进人工兔算法优化双向长短时记忆神经网络(improved artificial rabbit algorithm optimized bidirectional long ... 针对工业过程故障诊断精度低的问题,提出了一种基于栈式稀疏自编码网络(stacked sparse auto-encoder network, SSAE)和改进人工兔算法优化双向长短时记忆神经网络(improved artificial rabbit algorithm optimized bidirectional long short-term memory neural network, IARO-BiLSTM)的故障诊断方法。首先,利用SSAE网络强大的特征提取能力,实现对原始数据进行降维处理;其次,引入Circle混沌映射以达到丰富种群数量的目的,提出权重系数和Levy飞行机制改进人工兔算法的位置更新公式,提高人工兔算法的寻优能力,进而对BiLSTM网络的参数进行优化。最后,利用优化后的BiLSTM网络实现对故障的识别和分类。通过选取多组数据集进行验证,结果表明,基于SSAE-IARO-BiLSTM故障诊断方法能够准确地对故障进行识别和分类,且诊断准确率可达98%以上。 展开更多
关键词 故障诊断 人工兔算法(IARO) 双向长短时记忆网络(BiLSTM) 稀疏自编码器(SSAE)
在线阅读 下载PDF
基于OS-ELM和SDAE的Wi-Fi入侵检测方法 被引量:3
14
作者 刘明峰 侯路 +2 位作者 郭顺森 韩然 赵宇飞 《北京交通大学学报》 CAS CSCD 北大核心 2019年第5期87-93,101,共8页
为解决大多数Wi-Fi网络入侵检测方法实时性差、误报率高等问题,提出一种基于在线序列极限学习机(OS-ELM)的实时Wi-Fi网络入侵检测系统模型.首先,考虑到实验样本数据中正常与异常数据极不平衡的问题,采用SMOTE算法对数据样本中的异常数... 为解决大多数Wi-Fi网络入侵检测方法实时性差、误报率高等问题,提出一种基于在线序列极限学习机(OS-ELM)的实时Wi-Fi网络入侵检测系统模型.首先,考虑到实验样本数据中正常与异常数据极不平衡的问题,采用SMOTE算法对数据样本中的异常数据和正常数据进行平衡处理操作,使分类器的分类效果不受样本数据集中多数类样本的影响.然后使用栈式降噪自编码网络(SDAE)对平衡后的数据进行降维,消除无关或冗余特征降低检测建模规模,避免维度灾难.最后,在AWID数据集进行处理并输入到OS-ELM分类器中,结果表明:与其他基于浅层学习算法的检测方法相比,所提方法可有效地精简数据特征,降低了检测时间,同时在检测精度和误报率方面也体现出了更优性能. 展开更多
关键词 在线序列极限学习机 自编码网络 数据 入侵检测 WI-FI网络
在线阅读 下载PDF
基于深度学习的短时交通流预测 被引量:4
15
作者 李莹 李晓霞 《公路工程》 2021年第3期314-319,共6页
精确的交通流预测是智能运输系统的重要技术支撑,以实际交通流数据为背景,提出了一种新型的基于深度学习的交通流预测模型。将若干个降噪自编码器(DAE)进行堆叠,组成栈式降噪自编码器模型(SDAE),完成了深度学习框架的构建。进一步通过... 精确的交通流预测是智能运输系统的重要技术支撑,以实际交通流数据为背景,提出了一种新型的基于深度学习的交通流预测模型。将若干个降噪自编码器(DAE)进行堆叠,组成栈式降噪自编码器模型(SDAE),完成了深度学习框架的构建。进一步通过在顶层结构中增加标准预测模型,实现了基于深度学习的预测模型的搭建。结合实际交通流数据,开展了多个预测模型的实验对比。结果表明,考虑多维时空因素的SDAE预测精度更高,证明了模型的优越性。 展开更多
关键词 智能运输系统 自编码 交通流预测 深度学习
在线阅读 下载PDF
基于AGA-SSAE和SDP域转换的暂态电能质量扰动识别方法 被引量:1
16
作者 朱雅魁 赵莎莎 李争 《中国测试》 CAS 北大核心 2023年第8期28-35,66,共9页
针对复杂电能质量扰动信号非平稳性和非线性导致的信号特征难以直接提取和识别的问题,该文提出一种基于自适应遗传算法优化(adaptive genetic algorithm,AGA)的栈式稀疏自编码器(stacked sparse autoencoder,SSAE)和对称点模式(symmetri... 针对复杂电能质量扰动信号非平稳性和非线性导致的信号特征难以直接提取和识别的问题,该文提出一种基于自适应遗传算法优化(adaptive genetic algorithm,AGA)的栈式稀疏自编码器(stacked sparse autoencoder,SSAE)和对称点模式(symmetrized dot pattern,SDP)域转换的暂态电能质量扰动识别方法。首先,通过Matlab仿真随机生成6种单一扰动信号和9种复合扰动信号,通过SDP方法将原始时域扰动信号转换至极坐标域,实现扰动信号可视化并生成对应的扰动图谱,对扰动图谱进行参数优化;然后,基于Tensorflow开源框架搭建SSAE识别模型,并由AGA算法完成模型结构及其参数的优化,实现扰动图谱的深度特征提取与挖掘;最后,由末端分类器进行无监督学习分类,比较常见扰动识别方法的优劣。结果表明:该文提出的基于AGA-SSAE和SDP域转换的暂态电能质量扰动识别方法能够对暂态扰动进行高效、准确的识别分类,平均测试准确率为97.89%,优于传统方法10%左右;同时所提方法的架构清晰,且具有较好的收敛性和泛化能力,适用于电力系统电能质量暂态扰动的快速、精确识别。 展开更多
关键词 电能质量 对称点模 自编码 暂态系统
在线阅读 下载PDF
基于LMD能量熵和定位分析的风电变流器开路故障诊断 被引量:3
17
作者 张瑞成 白晓泽 +3 位作者 董砚 邸志刚 孙鹤旭 张靖轩 《太阳能学报》 EI CAS CSCD 北大核心 2023年第6期484-494,共11页
为提高风电变流器的故障诊断准确率,针对永磁同步风电机组网侧变流器IGBT模块的单一开路和双开路故障问题,提出一种基于局部均值分解(LMD)能量熵和定位分析的风电变流器开路故障诊断方法。首先,采集网侧变流器三相输出电流作为原始信号... 为提高风电变流器的故障诊断准确率,针对永磁同步风电机组网侧变流器IGBT模块的单一开路和双开路故障问题,提出一种基于局部均值分解(LMD)能量熵和定位分析的风电变流器开路故障诊断方法。首先,采集网侧变流器三相输出电流作为原始信号,利用LMD将其自适应分解为多层乘积函数(PF)分量,并求取各状态下PF分量的能量熵特征。然后,根据开路故障造成的三相电流时间序列的畸变特性进行定位分析。最后,将融合能量熵特征和定位参数的特征向量输入栈式稀疏自编码(SSAE)网络进行训练和故障识别。仿真与实验结果表明,融合能量熵特征和定位分析的特征提取方法使故障特征更为明显,相较于其他特征提取方法可有效提高风电变流器故障诊断准确率。 展开更多
关键词 风电机组 变流器 故障诊断 能量熵 定位分析 稀疏自编码网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部