期刊文献+
共找到26篇文章
< 1 2 >
每页显示 20 50 100
基于栈式降噪稀疏自动编码器的雷达目标识别方法 被引量:13
1
作者 赵飞翔 刘永祥 霍凯 《雷达学报(中英文)》 CSCD 2017年第2期149-156,共8页
雷达目标识别中特征提取是关键步骤,所提取特征的好坏决定着识别效果的优劣,但传统特征提取方法很难发掘目标数据深层次本质特征。深度学习理论中的自动编码器模型能够用数据去学习特征,获得数据不同层次的特征表达。同时为消除噪声影响... 雷达目标识别中特征提取是关键步骤,所提取特征的好坏决定着识别效果的优劣,但传统特征提取方法很难发掘目标数据深层次本质特征。深度学习理论中的自动编码器模型能够用数据去学习特征,获得数据不同层次的特征表达。同时为消除噪声影响,该文提出一种基于栈式降噪稀疏自动编码器的雷达目标识别方法,通过设置不同隐藏层数和迭代次数,从雷达数据中直接高效地提取识别所需的各层次特征。暗室仿真数据实验结果验证了该方法较K近邻分类方法及传统栈式自编码器有更好的识别效果。 展开更多
关键词 目标识别 深度学习 稀疏自动编码器
在线阅读 下载PDF
栈式降噪自编码器的标签协同过滤推荐算法 被引量:20
2
作者 霍欢 郑德原 +3 位作者 高丽萍 杨沪沪 刘亮 张薇 《小型微型计算机系统》 CSCD 北大核心 2018年第1期7-11,共5页
协同过滤推荐和基于内容的推荐是目前应用于推荐系统中的两种主流手段.传统的协同过滤模型存在着矩阵稀疏问题,基于内容的推荐又不能自动抽取深层特征,且两种推荐手段很难直接融合在一起,无法共同提升推荐系统的性能表现.充分利用了深... 协同过滤推荐和基于内容的推荐是目前应用于推荐系统中的两种主流手段.传统的协同过滤模型存在着矩阵稀疏问题,基于内容的推荐又不能自动抽取深层特征,且两种推荐手段很难直接融合在一起,无法共同提升推荐系统的性能表现.充分利用了深度学习模型能够深度挖掘内容隐藏信息的特性,将栈式降噪自编码器(SDAE)运用于基于内容的推荐模型中,并将其与基于标签的协同过滤算法结合在一起,提出DLCF(Deep Learning for Collaborative Filtering)算法.经过真实数据集的验证,DLCF算法能够很大程度上克服矩阵稀疏问题,在性能上优于传统推荐算法. 展开更多
关键词 推荐系统 协同过滤 深度学习 自编码器
在线阅读 下载PDF
基于栈式降噪自编码器的协同过滤算法 被引量:10
3
作者 周洋 陈家琪 《计算机应用研究》 CSCD 北大核心 2017年第8期2336-2339,共4页
针对协同过滤推荐准确性的现状进行了研究,提出一种基于栈式降噪自编码器的协同过滤算法。栈式降噪自编码器是一种典型的深度学习网络模型,具有强大的特征提取能力。用户对项目的评分作为输入,训练网络,学习出项目的隐含特征编码,用PCA... 针对协同过滤推荐准确性的现状进行了研究,提出一种基于栈式降噪自编码器的协同过滤算法。栈式降噪自编码器是一种典型的深度学习网络模型,具有强大的特征提取能力。用户对项目的评分作为输入,训练网络,学习出项目的隐含特征编码,用PCA对项目属性降维并计算属性相似性,结合隐性编码计算的相似性作为最终结果,根据最终的项目相似性产生top-N推荐列表。Movie Lens数据集的实验表明,该算法能够有效提升推荐结果的召回率,一定程度上解决了评分矩阵稀疏与项目之间没有共同用户评分就不能计算相似性的问题。 展开更多
关键词 推荐系统 协同过滤 深度学习 自编码器
在线阅读 下载PDF
基于改进栈式降噪自编码器的控制系统故障诊断 被引量:3
4
作者 罗毅 赵聪杰 武博翔 《计算机应用与软件》 北大核心 2022年第7期89-94,127,共7页
为了提高控制系统故障检测和分类能力,提出核主成分分析(KPCA)与栈式降噪自编码(SDAE)神经网络相结合的控制系统故障诊断方法。利用KPCA对故障数据进行非线性数据处理,再把数据输入到SDAE神经网络中进行无监督训练,获取最优网络参数,以S... 为了提高控制系统故障检测和分类能力,提出核主成分分析(KPCA)与栈式降噪自编码(SDAE)神经网络相结合的控制系统故障诊断方法。利用KPCA对故障数据进行非线性数据处理,再把数据输入到SDAE神经网络中进行无监督训练,获取最优网络参数,以Softmax分类层作为输出层实现故障分类。该模型有效解决了控制系统中慢漂移故障特征不明显导致模型故障诊断准确率低的问题,提高了故障诊断精度。通过TE系统实验,验证了该算法的有效性和卓越性。 展开更多
关键词 控制系统 故障诊断 自编码器 核主成分分析 Softmax分类器
在线阅读 下载PDF
基于栈式降噪自编码器的输变电设备状态数据清洗方法 被引量:62
5
作者 代杰杰 宋辉 +3 位作者 杨祎 陈玉峰 盛戈皞 江秀臣 《电力系统自动化》 EI CSCD 北大核心 2017年第12期224-230,共7页
针对当前输变电设备状态监测数据清洗过程繁琐,易造成信息丢失等问题,利用栈式降噪自编码器对"脏"数据的还原解析能力及异常状态特征提取能力,提出了一种基于栈式降噪自编码器的数据清洗方法。对设备正常工况及异常运行状态... 针对当前输变电设备状态监测数据清洗过程繁琐,易造成信息丢失等问题,利用栈式降噪自编码器对"脏"数据的还原解析能力及异常状态特征提取能力,提出了一种基于栈式降噪自编码器的数据清洗方法。对设备正常工况及异常运行状态数据分别利用栈式降噪自编码器进行训练学习,获取损失函数向量,形成奇异点、缺失数据修复模型和设备异常运行状态数据降噪模型。通过核密度估计确定训练样本损失函数上限和容限时窗,根据测试数据重构误差和异常数据时长与损失函数上限和容限时窗间的关系,对"脏"数据进行分类处理。对某变压器油色谱中总烃含量及某导线温度数据进行清洗,结果表明所提方法能有效辨识奇异点、缺失信息及异常运行状态数据,并对奇异点、缺失值进行修复重构。在设备异常运行时刻,可以有效过滤干扰数据。 展开更多
关键词 输变电设备 状态数据 数据清洗 自编码器 特征提取
在线阅读 下载PDF
基于栈式降噪自动编码器的建筑工程施工成本预测 被引量:15
6
作者 刘必君 叶雨辰 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第6期922-928,共7页
以高层建筑工程项目为例,对建筑工程施工成本影响因素进行可靠地识别和合理量化。基于深度学习下的栈式降噪自动编码器理论,结合神经网络,构建非线性工程项目的施工成本预测模型。通过实际案例在Matlab平台上进行仿真预测,实证了该方法... 以高层建筑工程项目为例,对建筑工程施工成本影响因素进行可靠地识别和合理量化。基于深度学习下的栈式降噪自动编码器理论,结合神经网络,构建非线性工程项目的施工成本预测模型。通过实际案例在Matlab平台上进行仿真预测,实证了该方法在预测建筑工程施工成本上的可靠性和精确性。 展开更多
关键词 建筑工程 施工成本 深度学习 噪自编码器 预测
在线阅读 下载PDF
基于模糊函数等高线与栈式降噪自编码器的雷达辐射源信号识别 被引量:11
7
作者 普运伟 郭江 +1 位作者 刘涛涛 吴海潇 《仪器仪表学报》 EI CAS CSCD 北大核心 2021年第1期207-216,共10页
针对当前复杂体制雷达辐射源信号识别方法抗噪性能差、识别率低等问题,提出一种基于模糊函数等高线与栈式降噪自编码器的新识别方法。首先对辐射源信号的模糊函数进行高斯滤波并根据线性插值计算等高线,然后采用主成分分析方法降低其特... 针对当前复杂体制雷达辐射源信号识别方法抗噪性能差、识别率低等问题,提出一种基于模糊函数等高线与栈式降噪自编码器的新识别方法。首先对辐射源信号的模糊函数进行高斯滤波并根据线性插值计算等高线,然后采用主成分分析方法降低其特征维度,保留主要模糊能量信息,最后构建深度学习栈式降噪自编码器,学习并提取等高线深层、泛在的特征,并通过Softmax分类器进行分类识别。实验结果表明,该方法在信噪比为0 dB时对6类典型雷达信号的整体平均识别率均保持在99.83%以上,即便是在-6 dB环境中,识别率也可达到83.67%,验证了所提方法在极低信噪比条件下良好的性能和可行性。 展开更多
关键词 雷达辐射源信号 模糊函数 信号识别 深度学习 自编码器
在线阅读 下载PDF
栈式降噪自编码器在辐射源信号识别中的应用 被引量:3
8
作者 叶文强 俞志富 +1 位作者 张奎 王虎帮 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2019年第6期47-53,共7页
针对传统辐射源信号识别方法在低信噪比条件下提取特征困难且识别率低的问题,提出了一种基于短时傅里叶(STFT)变换和栈式降噪自编码器(sDAE)的识别系统。首先对雷达辐射源信号进行短时傅里叶变化,然后对时频图像进行一系列预处理,将处... 针对传统辐射源信号识别方法在低信噪比条件下提取特征困难且识别率低的问题,提出了一种基于短时傅里叶(STFT)变换和栈式降噪自编码器(sDAE)的识别系统。首先对雷达辐射源信号进行短时傅里叶变化,然后对时频图像进行一系列预处理,将处理后的图像输入到栈式降噪自编码器中,将提取的特征输入到softmax分类器中,完成分类识别。通过仿真表明:该系统在SNR=-10 dB的时候,识别率能够达到80%以上,在低信噪比的情况下,识别效果明显优于传统识别方法。 展开更多
关键词 雷达辐射源 短时傅里叶 图像预处理 自编码器 分类器
在线阅读 下载PDF
基于栈式稀疏自编码器的新型干扰识别 被引量:5
9
作者 杨兴宇 阮怀林 《现代雷达》 CSCD 北大核心 2018年第5期21-27,共7页
为了有效应对频谱弥散干扰(SMSP)和切片组合干扰(C&I)两种新型干扰,提出了一种基于栈式稀疏自编码器的识别算法。该算法首先对于扰与否的雷达接收信号进行双谱分析;然后对双谱特征进行降维,得到高维样本。预训练阶段,构造稀疏... 为了有效应对频谱弥散干扰(SMSP)和切片组合干扰(C&I)两种新型干扰,提出了一种基于栈式稀疏自编码器的识别算法。该算法首先对于扰与否的雷达接收信号进行双谱分析;然后对双谱特征进行降维,得到高维样本。预训练阶段,构造稀疏自编码器神经网络模型进行无标签样本的预训练;然后根据有标签数据对该模型参数进行有监督微调;最后利用Softmax分类器完成新型干扰的识别。仿真实验证明该方法有较高的识别率,特别是相较于其他文献方法,该方法受信噪比影响最小且识别效果最佳。说明了深度学习方法应用于雷达新型干扰信号识别领域的可行性和优越性。 展开更多
关键词 新型干扰 干扰识别 双谱分析 稀疏自编码器
在线阅读 下载PDF
基于堆叠稀疏降噪自编码器的暂态稳定评估模型 被引量:6
10
作者 温涛 张敏 王怀远 《电力工程技术》 北大核心 2022年第1期207-212,共6页
深度学习模型凭借其良好的性能被引入到电力系统的暂态稳定性评估中,但进行在线应用时,须关注模型的抗噪能力和泛化能力。文中提出一种基于堆叠稀疏降噪自编码器(SSDAE)的暂态稳定性评估模型,首先对原始输入数据加入噪声得到受损数据样... 深度学习模型凭借其良好的性能被引入到电力系统的暂态稳定性评估中,但进行在线应用时,须关注模型的抗噪能力和泛化能力。文中提出一种基于堆叠稀疏降噪自编码器(SSDAE)的暂态稳定性评估模型,首先对原始输入数据加入噪声得到受损数据样本,然后对受损数据样本进行高阶特征提取,最后将提取的高阶特征重构成未受损的数据,这一训练过程大大提高了模型的抗噪能力。同时,在对输入特征进行重构的过程中,对隐藏层神经元权重和激活程度进行抑制,实现模型的稀疏化,以此提高模型的泛化能力。仿真结果表明,相对于其他机器学习算法,SSDAE模型具有良好的抗噪能力和泛化能力。 展开更多
关键词 深度学习 堆叠稀疏自编码器(ssdae) 暂态稳定 声能力 泛化能力 机器学习
在线阅读 下载PDF
基于改进栈式自编码器的风电机组发电机健康评估 被引量:11
11
作者 林涛 赵成林 +1 位作者 刘航鹏 赵参参 《计算机工程与科学》 CSCD 北大核心 2020年第3期517-522,共6页
风电机组发电机具有结构复杂、维修困难的特点,为对其进行健康评估,结合去噪自编码器与稀疏自编码器的特点,对传统栈式自编码器模型进行改进,利用模型的重构误差监测风电机组发电机的运行状态。将经离线测试得到的重构误差与在线监测得... 风电机组发电机具有结构复杂、维修困难的特点,为对其进行健康评估,结合去噪自编码器与稀疏自编码器的特点,对传统栈式自编码器模型进行改进,利用模型的重构误差监测风电机组发电机的运行状态。将经离线测试得到的重构误差与在线监测得到的重构误差进行分布差异性比对,通过融合3种差异指标得到风电机组发电机的健康度。利用河北某风场实际数据对健康评估模型进行训练测试,通过实例分析证明该模型能够有效跟踪风电机组发电机的状态变化,具有故障早期识别的作用。 展开更多
关键词 风电机组发电机 健康度 自编码器 噪自编码 稀疏自编码器
在线阅读 下载PDF
基于EEMD-SE和栈式降噪自编码网络的局部放电模式识别 被引量:5
12
作者 张金水 蒋伟 薛乃凡 《计算机应用与软件》 北大核心 2021年第9期34-38,132,共6页
由于变电站环境复杂,利用传统的特征统计方法不能准确地提取局部放电(PD)信号的特征及对其识别分类。对此,提出一种基于集合经验模态分解(EEMD)和样本熵(SE)的局部放电信号特征提取方法。利用EEMD算法对局部放电信号进行时频分析;计算E... 由于变电站环境复杂,利用传统的特征统计方法不能准确地提取局部放电(PD)信号的特征及对其识别分类。对此,提出一种基于集合经验模态分解(EEMD)和样本熵(SE)的局部放电信号特征提取方法。利用EEMD算法对局部放电信号进行时频分析;计算EEMD分解得到的固有模态函数(IMF)的样本熵,并将其作为特征向量表征不同放电类型;采用栈式降噪自编码网络(SDAE)对放电类型进行分类识别。通过对四类局部放电故障进行特征提取和模式识别,对比实验结果表明,该方法能有效地提取放电信号的特征,并较准确地识别各类放电类型。 展开更多
关键词 局部放电 集合经验模态分解 样本熵 自编码器 特征提取 识别
在线阅读 下载PDF
结合栈式自编码及长短时记忆的入侵检测研究 被引量:2
13
作者 林硕 安磊 +2 位作者 高治军 单丹 尚文利 《系统仿真学报》 CAS CSCD 北大核心 2021年第6期1288-1296,共9页
针对网络攻击越来越隐蔽,且具有智能化和复杂化的特点,浅层的机器学习已经无法及时应对,提出了一种基于SDAE(Stacked Denoising Autoencoder)和LSTM(Long Short-Term Memory)相结合的深度学习方法。通过堆叠深层的SDAE智能逐层抽取网络... 针对网络攻击越来越隐蔽,且具有智能化和复杂化的特点,浅层的机器学习已经无法及时应对,提出了一种基于SDAE(Stacked Denoising Autoencoder)和LSTM(Long Short-Term Memory)相结合的深度学习方法。通过堆叠深层的SDAE智能逐层抽取网络数据的分布规则,结合各个编码层的系数惩罚和重构误差对高维数据进行多样性异常特征提取。结合LSTM的记忆功能和强大的序列数据学习能力进行学习分类。在UNSW-NB15数据集上进行了实验,通过调整时间步长进行分析,实验结果表明,该模型具有检测准确率高、误报率低的优点。 展开更多
关键词 深度学习 入侵检测技术 自编码器 长短时记忆网络
在线阅读 下载PDF
面向中文语音情感识别的改进栈式自编码结构 被引量:6
14
作者 朱芳枚 赵力 +2 位作者 梁瑞宇 王青云 邹采荣 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第4期631-636,共6页
为进一步提高汉语语音情感识别率,基于深度学习中的自编码、降噪自编码及稀疏自编码的网络结构,提出了一种改进的栈式自编码结构.该结构第1层使用降噪自编码学习一个比输入特征维数更大的隐藏特征,第2层采用稀疏自编码学习稀疏性特征,... 为进一步提高汉语语音情感识别率,基于深度学习中的自编码、降噪自编码及稀疏自编码的网络结构,提出了一种改进的栈式自编码结构.该结构第1层使用降噪自编码学习一个比输入特征维数更大的隐藏特征,第2层采用稀疏自编码学习稀疏性特征,最后使用softmax分类器进行分类识别.训练过程首先采用逐层预训练的方法,达到网络参数全面初始化的目的,然后对整个网络进行微调.在中文语音库上的情感识别实验显示,相较于单独使用栈式降噪或稀疏自编码,所提结构具有更好的识别效果.此外,基于CASIA库的对比实验显示,该结构比K近邻算法、稀疏表示方法、传统支持向量机和人工神经网络识别率分别提高了53.7%,29.8%,14.3%和1.9%.在自行录制的语音库中,该结构的识别率比人工神经网络提高了1.64%. 展开更多
关键词 语音情感识别 改进的编码 噪自编码 稀疏编码
在线阅读 下载PDF
基于栈式降维与字典学习的辐射源调制识别 被引量:3
15
作者 李东瑾 杨瑞娟 +2 位作者 李晓柏 朱晟坤 费太勇 《兵工学报》 EI CAS CSCD 北大核心 2020年第10期2023-2032,共10页
针对低信噪比环境下辐射源调制识别准确率和时效性不高问题,提出一种基于时频特征、栈式降维和字典学习的分类识别系统。对时域信号进行时频变换和稀疏域降噪,获取二维时频特征并降低噪声干扰;基于无监督学习的栈式降维网络提取低维非... 针对低信噪比环境下辐射源调制识别准确率和时效性不高问题,提出一种基于时频特征、栈式降维和字典学习的分类识别系统。对时域信号进行时频变换和稀疏域降噪,获取二维时频特征并降低噪声干扰;基于无监督学习的栈式降维网络提取低维非线性特征,进而降低特征冗余并提高后续处理时效性;通过多项判别约束和正则约束强化字典类间判别能力与分类时效性,并实现调制类型识别。仿真结果验证了该分类识别系统的有效性和可行性:当信噪比为-8 dB时,单载频信号、二相频率编码信号、四相频率编码信号、线性调频信号、二相编码信号、四相编码信号、Frank信号7类辐射源信号的整体平均识别率达到95.93%,具备较强的鲁棒性和时效性。 展开更多
关键词 辐射源调制识别 字典学习 稀疏 正则约束 时频特征
在线阅读 下载PDF
基于多源栈式混合自编器的窃电检测 被引量:1
16
作者 韩金涛 雷景生 《计算机应用与软件》 北大核心 2022年第9期87-93,共7页
针对用电数据特征提取能力的不足,对用户用电量数据进行分析,提出一种基于多源栈式混合自编码器的窃电检测方法。通过构建混合自编码单元,提高模型抽象特征的提取能力,利用多源栈式网络增加网络深度,增强了模型的泛化能力,结合人工特征... 针对用电数据特征提取能力的不足,对用户用电量数据进行分析,提出一种基于多源栈式混合自编码器的窃电检测方法。通过构建混合自编码单元,提高模型抽象特征的提取能力,利用多源栈式网络增加网络深度,增强了模型的泛化能力,结合人工特征提取流程提高了分类准确率。在国家电网公布的真实用电量数据集上进行测试,验证了该模型的有效性。 展开更多
关键词 窃电检测 自编码器 稀疏自编码器 多源网络
在线阅读 下载PDF
基于Focal损失SSDAE的变压器故障诊断方法 被引量:14
17
作者 武天府 刘征 +2 位作者 王志强 李劲松 李国锋 《电力工程技术》 北大核心 2021年第6期18-24,共7页
研究变压器的故障诊断对电力系统安全稳定运行具有重大现实意义。以油中溶解气体特征为输入的传统变压器故障诊断方法在处理样本不平衡数据时具有较大的局限性。针对这一问题,文中提出一种基于Focal损失栈式稀疏降噪自编码器(SSDAE)的... 研究变压器的故障诊断对电力系统安全稳定运行具有重大现实意义。以油中溶解气体特征为输入的传统变压器故障诊断方法在处理样本不平衡数据时具有较大的局限性。针对这一问题,文中提出一种基于Focal损失栈式稀疏降噪自编码器(SSDAE)的变压器故障诊断方法。该方法通过类别权重确定超参数,并在原始输入中加入高斯白噪声,有利于自编码器充分提取有效特征,进而得到有效的深度特征提取模型;采用Focal损失函数对模型进行优化,并利用Softmax分类器输出诊断结果。案例分析结果表明,与传统三比值法、反向传播神经网络(BPNN)和支持向量机(SVM)法等变压器故障诊断方法相比,文中方法可进一步提升诊断准确率。 展开更多
关键词 变压器 故障诊断 稀疏自编码器(ssdae) Softmax分类器 Focal损失 类别权重
在线阅读 下载PDF
基于自编码组合特征提取的分类方法研究 被引量:6
18
作者 谷丛丛 王艳 +1 位作者 严大虎 纪志成 《系统仿真学报》 CAS CSCD 北大核心 2018年第11期4132-4140,共9页
针对自动编码器无监督训练过程中不能根据标签提取类别信息的问题,为提高识别准确率,提出栈式分类降噪自动编码器(Stacked Class Denoising Autoencoder, SCDAE)来获取类别信息,并使用自编码组合特征提取方法提取组合特征用于分类。该... 针对自动编码器无监督训练过程中不能根据标签提取类别信息的问题,为提高识别准确率,提出栈式分类降噪自动编码器(Stacked Class Denoising Autoencoder, SCDAE)来获取类别信息,并使用自编码组合特征提取方法提取组合特征用于分类。该方法构建栈式降噪自动编码器(Stacked Denoising Autoencoder, SDAE)和SCDAE;微调SDAE和SCDAE形成组合模型(Combined Model, CM);使用CM提取包含输入数据主要信息和类别信息的组合特征进行分类。选取MNIST和USPS手写体识别库进行测试,实验结果表明,该方法可以有效提取特征,提高识别准确率。 展开更多
关键词 噪自编码器 分类噪自编码器 类别信息 组合特征
在线阅读 下载PDF
基于深度学习的兵棋演习数据特征提取方法研究 被引量:21
19
作者 郑书奎 吴琳 贺筱媛 《指挥与控制学报》 2016年第3期194-201,共8页
为使基于机器学习的兵棋演习战场态势分析理解取得更好结果,围绕兵棋演习数据特征提取问题,以深度学习方法为手段,提出了一种栈式稀疏降噪自编码网络模型,输入真实的兵棋演习数据进行了特征提取实验,通过分类精度表征了方法的效果,并进... 为使基于机器学习的兵棋演习战场态势分析理解取得更好结果,围绕兵棋演习数据特征提取问题,以深度学习方法为手段,提出了一种栈式稀疏降噪自编码网络模型,输入真实的兵棋演习数据进行了特征提取实验,通过分类精度表征了方法的效果,并进行了多种不同方法的对比实验,证明了深度学习方法的优势. 展开更多
关键词 深度学习 兵棋演习数据 特征提取 稀疏噪自编码网络
在线阅读 下载PDF
混合深层协同过滤的SVD++推荐方法 被引量:3
20
作者 汪赫瑜 夏航 任建华 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2020年第6期524-532,共9页
为抑制辅助信息在推荐模型中各个方向的扰动并考虑使用文本信息提取项目特征,提出一种矩阵分解模型,混合深层协同过滤的SVD++推荐方法.该模型将附加栈式降噪自编码器和堆叠的收缩降噪自编码器与辅助信息相结合,分别提取用户和项目的潜... 为抑制辅助信息在推荐模型中各个方向的扰动并考虑使用文本信息提取项目特征,提出一种矩阵分解模型,混合深层协同过滤的SVD++推荐方法.该模型将附加栈式降噪自编码器和堆叠的收缩降噪自编码器与辅助信息相结合,分别提取用户和项目的潜在特征表示,并在提取项目特征表示时加入预训练的词嵌入模型考虑词语之间的语义关系.在数据集MovieLens-1M与MovieLens-10M的实验.结果表明:相比于传统算法、深度学习算法以及所提模型的变体,所提模型更有效地提取潜在特征表示并提高预测评分精度. 展开更多
关键词 推荐系统 深度学习 附加自编码器 收缩自编码器 矩阵分解
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部