期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于栈式稀疏自编码多特征融合的快速手势识别方法 被引量:4
1
作者 强彦 董林佳 +1 位作者 赵涓涓 张婷 《北京理工大学学报》 EI CAS CSCD 北大核心 2019年第6期638-643,共6页
针对复杂背景下手势分割提取效果不佳、图像识别率不高、识别困难等问题,研究多特征融合的快速手势识别方法.利用YCbCr颜色空间模型,构建肤色分布模型,从复杂背景中去除大部分非肤色的干扰,从而实现手势分割;接着采用5层栈式稀疏自编码... 针对复杂背景下手势分割提取效果不佳、图像识别率不高、识别困难等问题,研究多特征融合的快速手势识别方法.利用YCbCr颜色空间模型,构建肤色分布模型,从复杂背景中去除大部分非肤色的干扰,从而实现手势分割;接着采用5层栈式稀疏自编码网络框架,分别提取手势感兴趣区域(region of interest,ROI)的纹理图像、形状图像和显著视觉图像作为自编码网络输入,将提取到的不同类型的特征进行线性融合;最后使用基于径向基核函数(radial basis function,RBF)的支持向量机(support vector machine,SVM)分类器进行融合特征数据分类,从而实现不同类型的手势识别.实验结果表明,相比其他手势识别方法,本文方法识别率较高,提取特征更具有代表性,平均识别率可达95.05%. 展开更多
关键词 YCbCr颜色空间模型 手势分割 栈式稀疏自编码 多特征融合 手势识别
在线阅读 下载PDF
基于多特征优化的PolSAR数据农作物精细分类方法 被引量:1
2
作者 郭交 王鹤颖 +2 位作者 项诗雨 连嘉茜 王辉 《农业机械学报》 EI CAS CSCD 北大核心 2024年第9期275-285,共11页
农作物精细分类在农业资源调查、农作物种植结构监管等诸多领域具有重要意义。极化合成孔径雷达(Polarimetric synthetic aperture radar,PolSAR)能够有效探测伪装和穿透掩盖物,提取多种散射特征信息,获取覆盖农作物生长关键物候阶段的... 农作物精细分类在农业资源调查、农作物种植结构监管等诸多领域具有重要意义。极化合成孔径雷达(Polarimetric synthetic aperture radar,PolSAR)能够有效探测伪装和穿透掩盖物,提取多种散射特征信息,获取覆盖农作物生长关键物候阶段的连续时序信息,有效提升表达作物遥感特征的丰富度,在农作物分类中独具优势。但多时相和多特征的引入必然导致模型运算量剧增,不利于工程应用。针对上述问题,本文提出了一种基于多特征优化的PolSAR数据农作物精细分类方法,首先对PolSAR数据进行多种极化目标分解及参数提取以获得多个散射特征;然后使用基于栈式稀疏自编码网络和ReliefF优选的方法进行特征增强与优化,获取最优特征集;最后构建具有2个分支结构的卷积神经网络,融合不同卷积深度输出的特征,完成农作物的高精度分类。通过对单时相数据的特征分析、单时相数据初步分类实验和多时相数据不同特征集结合分类器的对比实验,证明本文所提方法能够在低维特征输入的前提下,最大程度提取不同作物之间的差异性特征,准确高效地实现对农作物的精细分类,最高分类精度和Kappa系数分别达到97.69%和97.24%。 展开更多
关键词 农作物分类 POLSAR 栈式稀疏自编码网络 RELIEFF 卷积神经网络
在线阅读 下载PDF
SSAE和IGWO-SVM的滚动轴承故障诊断 被引量:19
3
作者 袁宪锋 颜子琛 +2 位作者 周风余 宋勇 缪昭明 《振动.测试与诊断》 EI CSCD 北大核心 2020年第2期405-413,424,共10页
针对滚动轴承的故障诊断问题,提出了一种基于栈式稀疏自编码网络(stacked sparse auto encoder,简称SSAE)、改进灰狼智能优化算法(improved grey wolf optimization,简称IGWO)以及支持向量机(support vector machine,简称SVM)的混合智... 针对滚动轴承的故障诊断问题,提出了一种基于栈式稀疏自编码网络(stacked sparse auto encoder,简称SSAE)、改进灰狼智能优化算法(improved grey wolf optimization,简称IGWO)以及支持向量机(support vector machine,简称SVM)的混合智能故障诊断模型。首先,利用栈式自编码网络强大的特征自提取能力,实现故障信号深层频谱特征的自适应学习,通过引入稀疏项约束提高特征学习的泛化性能;其次,利用改进的灰狼算法实现支持向量机的参数优化;最后,基于优化后的SVM完成对故障特征向量的分类识别。所提混合智能故障诊断模型充分结合了深度神经网络强大的特征自学习能力和支持向量机优秀的小样本分类性能,避免了手工特征提取的弊端,可对不同故障类型的振动信号实现更精准的识别。多组对比实验表明,相比传统方法,笔者所提出的模型具有更优秀的故障识别能力,诊断准确率可达98%以上。 展开更多
关键词 滚动轴承故障诊断 栈式稀疏自编码网络 特征提取 灰狼算法 支持向量机
在线阅读 下载PDF
相移键控信号的深度神经网络解调器 被引量:4
4
作者 杨耀栋 吴乐南 《电子测量与仪器学报》 CSCD 北大核心 2018年第4期144-150,共7页
多元位置相移键控(MPPSK)信号具有高带宽利用率的特性,但是,带限信道下传统解调方案的解调性能大幅度下降。针对这个问题,提出了基于栈式稀疏自编码(SSAE)网络的码元判决方案。从接收信号提取特征信息和码元之间的码间干扰,并使用深度... 多元位置相移键控(MPPSK)信号具有高带宽利用率的特性,但是,带限信道下传统解调方案的解调性能大幅度下降。针对这个问题,提出了基于栈式稀疏自编码(SSAE)网络的码元判决方案。从接收信号提取特征信息和码元之间的码间干扰,并使用深度学习的思想对SSAE网络进行训练,使SSAE网络在信道环境恶劣的条件下对码元进行正确分类。此外,提出'多码元联合判决'方案并应用到SSAE网络的训练中,有效提高网络的解调性能。仿真结果表明,SSAE网络比传统方案的解调性能提高1~2个数量级,并且对信道环境的适应性更强。 展开更多
关键词 多元位置相移键控 栈式稀疏自编码网络 深度学习 带限信道 联合判决
在线阅读 下载PDF
基于深度学习的兵棋演习数据特征提取方法研究 被引量:21
5
作者 郑书奎 吴琳 贺筱媛 《指挥与控制学报》 2016年第3期194-201,共8页
为使基于机器学习的兵棋演习战场态势分析理解取得更好结果,围绕兵棋演习数据特征提取问题,以深度学习方法为手段,提出了一种栈式稀疏降噪自编码网络模型,输入真实的兵棋演习数据进行了特征提取实验,通过分类精度表征了方法的效果,并进... 为使基于机器学习的兵棋演习战场态势分析理解取得更好结果,围绕兵棋演习数据特征提取问题,以深度学习方法为手段,提出了一种栈式稀疏降噪自编码网络模型,输入真实的兵棋演习数据进行了特征提取实验,通过分类精度表征了方法的效果,并进行了多种不同方法的对比实验,证明了深度学习方法的优势. 展开更多
关键词 深度学习 兵棋演习数据 特征提取 稀疏降噪自编码网络
在线阅读 下载PDF
基于LMD能量熵和定位分析的风电变流器开路故障诊断 被引量:8
6
作者 张瑞成 白晓泽 +3 位作者 董砚 邸志刚 孙鹤旭 张靖轩 《太阳能学报》 EI CAS CSCD 北大核心 2023年第6期484-494,共11页
为提高风电变流器的故障诊断准确率,针对永磁同步风电机组网侧变流器IGBT模块的单一开路和双开路故障问题,提出一种基于局部均值分解(LMD)能量熵和定位分析的风电变流器开路故障诊断方法。首先,采集网侧变流器三相输出电流作为原始信号... 为提高风电变流器的故障诊断准确率,针对永磁同步风电机组网侧变流器IGBT模块的单一开路和双开路故障问题,提出一种基于局部均值分解(LMD)能量熵和定位分析的风电变流器开路故障诊断方法。首先,采集网侧变流器三相输出电流作为原始信号,利用LMD将其自适应分解为多层乘积函数(PF)分量,并求取各状态下PF分量的能量熵特征。然后,根据开路故障造成的三相电流时间序列的畸变特性进行定位分析。最后,将融合能量熵特征和定位参数的特征向量输入栈式稀疏自编码(SSAE)网络进行训练和故障识别。仿真与实验结果表明,融合能量熵特征和定位分析的特征提取方法使故障特征更为明显,相较于其他特征提取方法可有效提高风电变流器故障诊断准确率。 展开更多
关键词 风电机组 变流器 故障诊断 能量熵 定位分析 栈式稀疏自编码网络
在线阅读 下载PDF
基于SSAE-LSTM神经网络的风电变流器开路故障诊断 被引量:8
7
作者 张瑞成 白晓泽 +3 位作者 董砚 邸志刚 孙鹤旭 张靖轩 《可再生能源》 CAS CSCD 北大核心 2023年第3期361-369,共9页
针对风电变流器IGBT模块开路故障,在诊断中长时间序列信号的特征时难以提取和识别,文章提出了一种基于栈式稀疏自编码(SSAE)网络和长短期记忆(LSTM)神经网络的开路故障诊断方法。以网侧变流器为主要研究对象,首先,将预处理后的原始电流... 针对风电变流器IGBT模块开路故障,在诊断中长时间序列信号的特征时难以提取和识别,文章提出了一种基于栈式稀疏自编码(SSAE)网络和长短期记忆(LSTM)神经网络的开路故障诊断方法。以网侧变流器为主要研究对象,首先,将预处理后的原始电流信号输入SSAE网络,利用无监督学习方式进行逐层贪婪训练,并结合有监督学习方式对SSAE网络进行参数更新和局部微调,进而提取隐含层降维特征,构建特征矩阵;其次,利用LSTM神经网络在处理时间序列中的记忆优势,将特征矩阵作为LSTM网络的输入进行模型的训练;最后,利用Softmax分类器实现故障的识别和分类。诊断结果表明,该方法实现了自动提取网侧变流器的故障电流信号特征;同时所提方法能够风电变流器IGBT模块单一开路和双开路的22种开路故障问题进行准确地识别和分类,平均测试集准确率可达99.64%。 展开更多
关键词 风电变流器 故障诊断 特征提取 栈式稀疏自编码 长短期记忆
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部