期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于栈式去噪自编码器的遥感图像分类 被引量:12
1
作者 张一飞 陈忠 +1 位作者 张峰 欧阳超 《计算机应用》 CSCD 北大核心 2016年第A02期171-174,188,共5页
针对传统遥感图像分类方法难以取得更高精度的问题,提出一种根据深度学习思想的基于栈式去噪自编码器的遥感图象分类方法。首先,将多个去噪自编码器栈式叠加构成深度网络模型,用无监督的layer-wise方法由下至上训练每一层网络并在训练... 针对传统遥感图像分类方法难以取得更高精度的问题,提出一种根据深度学习思想的基于栈式去噪自编码器的遥感图象分类方法。首先,将多个去噪自编码器栈式叠加构成深度网络模型,用无监督的layer-wise方法由下至上训练每一层网络并在训练数据中加入噪声以得到更为稳健的特征表达;然后,通过反向传播(BP)神经网络对特征进行有监督学习并利用误差反向传播对整个网络参数进行进一步优化得到最终的模型;最后,利用国产高分一号遥感数据进行实验验证。基于栈式去噪自编码器的遥感图像分类方法的总体分类精度和kappa精度分别达到95.7%和95.5%,均高于传统的支持向量机(SVM)和BP神经网络的分类精度。实验结果表明,所提出的方法能有效提高遥感图像的分类精度。 展开更多
关键词 深度学习 栈式去噪自编码器 反向传播神经网络 遥感图像 地物分类
在线阅读 下载PDF
基于混合深度神经网络的异常检测方法
2
作者 邱鹏 刘汉忠 黄晓华 《实验室研究与探索》 CAS 北大核心 2023年第9期73-77,共5页
为提高监控与数据采集中的异常检测精度和效率,对数据进行归一化特征标准、拆分、均衡以及独热编码等预处理,构建栈式稀疏去噪自编码器深度神经网络模型作为混合深度神经网络,重建网络模型中自编码器的输入特征值,进行无监督特征学习,... 为提高监控与数据采集中的异常检测精度和效率,对数据进行归一化特征标准、拆分、均衡以及独热编码等预处理,构建栈式稀疏去噪自编码器深度神经网络模型作为混合深度神经网络,重建网络模型中自编码器的输入特征值,进行无监督特征学习,再添加监督分类器。通过训练异常检测引擎模块来完成异常检测。仿真结果表明,在检测异常攻击特征上,无论是精度与召回率协调值还是假阳性率相较于其他检测算法都更有优势;采用分布式训练模型提高了异常检测效率,证明本方法可行且有效。 展开更多
关键词 混合深度神经网络 无监督特征学习 稀疏去噪自编码器 监督分类器 异常检测
在线阅读 下载PDF
基于边缘云框架的高效安全人脸表情识别 被引量:1
3
作者 张娴静 褚含冰 刘鑫 《计算机工程与设计》 北大核心 2021年第5期1472-1478,共7页
针对物联网环境下数据量大且人脸表情识别率低的问题,提出基于边缘云框架的高效安全人脸表情识别方法。物联网设备通过多秘密共享技术获取用户信息,并分发到不同的边缘云。边缘云利用语谱图和局部二值模式的方法提取语音特征,采用差值... 针对物联网环境下数据量大且人脸表情识别率低的问题,提出基于边缘云框架的高效安全人脸表情识别方法。物联网设备通过多秘密共享技术获取用户信息,并分发到不同的边缘云。边缘云利用语谱图和局部二值模式的方法提取语音特征,采用差值中心对称局部二值模式获得图像特征,将特征送至核心云。基于栈式稀疏去噪自编码器融合语音和图像特征,实现人脸表情的识别,并在RML和eNTERFACE’05数据库上进行实验。实验结果表明,该方法的识别准确率明显高于对比方法,抵御网络攻击的能力较强。 展开更多
关键词 边缘云框架 多秘密共享技术 差值中心对称局部二值模 人脸表情识别 稀疏去噪自编码器
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部