研究了在正例和未标记样本场景下不确定样本的分类问题,提出了一种新的算法NNPU(nearest neighbor algorithm for positive and unlabeled learning)。NNPU具有两种实现方式:NNPUa和NNPUu。在UCI标准数据集上的实验结果表明,充分考虑数...研究了在正例和未标记样本场景下不确定样本的分类问题,提出了一种新的算法NNPU(nearest neighbor algorithm for positive and unlabeled learning)。NNPU具有两种实现方式:NNPUa和NNPUu。在UCI标准数据集上的实验结果表明,充分考虑数据不确定信息的NNPUu算法要比仅仅考虑样本中不确定信息均值的NNPUa算法具有更好的分类能力;同时,NNPU算法在对精确数据进行分类时,比NN-d、OCC以及aPUNB算法性能更优。展开更多
传统机器学习方法和深度神经网络在训练模型的过程中都需要大量标记样本作为支撑,然而标记大量样本是一个耗费巨大的过程,并且真实场景变化莫测,获得所有类别的标记样本是不现实的.因此,研究者开始突破标记样本的限制,提出一种更符合现...传统机器学习方法和深度神经网络在训练模型的过程中都需要大量标记样本作为支撑,然而标记大量样本是一个耗费巨大的过程,并且真实场景变化莫测,获得所有类别的标记样本是不现实的.因此,研究者开始突破标记样本的限制,提出一种更符合现实的场景——开放集识别(Open Set Recognition,OSR).OSR要求建立的模型不仅能分类训练过程中出现的类别,还可以有效地处理未见过的类别.近年来,OSR迅速发展成为热点领域,大量的工作围绕OSR展开.对现有的OSR工作进行总结:首先,从定义上将OSR与其他相关工作进行区分;其次,按照模型建立、度量选择、增量特点对OSR算法进行总结,并介绍了OSR的两种理论;最后展望了OSR未来的发展方向.展开更多
半监督学习方法通过少量标记数据和大量未标记数据来提升学习性能.Tri-training是一种经典的基于分歧的半监督学习方法,但在学习过程中可能产生标记噪声问题.为了减少Tri-training中的标记噪声对未标记数据的预测偏差,学习到更好的半监...半监督学习方法通过少量标记数据和大量未标记数据来提升学习性能.Tri-training是一种经典的基于分歧的半监督学习方法,但在学习过程中可能产生标记噪声问题.为了减少Tri-training中的标记噪声对未标记数据的预测偏差,学习到更好的半监督分类模型,用交叉熵代替错误率以更好地反映模型预估结果和真实分布之间的差距,并结合凸优化方法来达到降低标记噪声的目的,保证模型效果.在此基础上,分别提出了一种基于交叉熵的Tri-training算法、一个安全的Tri-training算法,以及一种基于交叉熵的安全Tri-training算法.在UCI(University of California Irvine)机器学习库等基准数据集上验证了所提方法的有效性,并利用显著性检验从统计学的角度进一步验证了方法的性能.实验结果表明,提出的半监督学习方法在分类性能方面优于传统的Tri-training算法,其中基于交叉熵的安全Tri-training算法拥有更高的分类性能和泛化能力.展开更多
目前基于PU问题的时间序列分类常采用半监督学习对未标注数据集U中数据进行自动标注并构建分类器,但在这种方法中,边界数据样本类别的自动标注难以保证正确性,从而导致构建分类器的效果不佳。针对以上问题,提出一种采用主动学习对未标...目前基于PU问题的时间序列分类常采用半监督学习对未标注数据集U中数据进行自动标注并构建分类器,但在这种方法中,边界数据样本类别的自动标注难以保证正确性,从而导致构建分类器的效果不佳。针对以上问题,提出一种采用主动学习对未标注数据集U中数据进行人工标注从而构建分类器的方法 OAL(Only Active Learning),基于投票委员会(QBC)对标注数据集构建多个分类器进行投票,以计算未标注数据样本的类别不一致性,并综合考虑数据样本的分布密度,计算数据样本的信息量,作为主动学习的数据选择策略。鉴于人工标注数据量有限,在上述OAL方法的基础上,将主动学习与半监督学习相结合,即在主动学习迭代过程中,将类别一致性高的部分数据样本自动标注,以增加训练数据中标注数据量,保证构建分类器的训练数据量。实验表明了该方法通过部分人工标注,相比半监督学习,能够为PU数据集构建更高准确率的分类器。展开更多
基金The National Natural Science Foundation of China under Grant No.60873196the Fundamental Research Funds for the Central Universities under Grant No.QN2009092~~
文摘研究了在正例和未标记样本场景下不确定样本的分类问题,提出了一种新的算法NNPU(nearest neighbor algorithm for positive and unlabeled learning)。NNPU具有两种实现方式:NNPUa和NNPUu。在UCI标准数据集上的实验结果表明,充分考虑数据不确定信息的NNPUu算法要比仅仅考虑样本中不确定信息均值的NNPUa算法具有更好的分类能力;同时,NNPU算法在对精确数据进行分类时,比NN-d、OCC以及aPUNB算法性能更优。
文摘传统机器学习方法和深度神经网络在训练模型的过程中都需要大量标记样本作为支撑,然而标记大量样本是一个耗费巨大的过程,并且真实场景变化莫测,获得所有类别的标记样本是不现实的.因此,研究者开始突破标记样本的限制,提出一种更符合现实的场景——开放集识别(Open Set Recognition,OSR).OSR要求建立的模型不仅能分类训练过程中出现的类别,还可以有效地处理未见过的类别.近年来,OSR迅速发展成为热点领域,大量的工作围绕OSR展开.对现有的OSR工作进行总结:首先,从定义上将OSR与其他相关工作进行区分;其次,按照模型建立、度量选择、增量特点对OSR算法进行总结,并介绍了OSR的两种理论;最后展望了OSR未来的发展方向.
文摘半监督学习方法通过少量标记数据和大量未标记数据来提升学习性能.Tri-training是一种经典的基于分歧的半监督学习方法,但在学习过程中可能产生标记噪声问题.为了减少Tri-training中的标记噪声对未标记数据的预测偏差,学习到更好的半监督分类模型,用交叉熵代替错误率以更好地反映模型预估结果和真实分布之间的差距,并结合凸优化方法来达到降低标记噪声的目的,保证模型效果.在此基础上,分别提出了一种基于交叉熵的Tri-training算法、一个安全的Tri-training算法,以及一种基于交叉熵的安全Tri-training算法.在UCI(University of California Irvine)机器学习库等基准数据集上验证了所提方法的有效性,并利用显著性检验从统计学的角度进一步验证了方法的性能.实验结果表明,提出的半监督学习方法在分类性能方面优于传统的Tri-training算法,其中基于交叉熵的安全Tri-training算法拥有更高的分类性能和泛化能力.
文摘目前基于PU问题的时间序列分类常采用半监督学习对未标注数据集U中数据进行自动标注并构建分类器,但在这种方法中,边界数据样本类别的自动标注难以保证正确性,从而导致构建分类器的效果不佳。针对以上问题,提出一种采用主动学习对未标注数据集U中数据进行人工标注从而构建分类器的方法 OAL(Only Active Learning),基于投票委员会(QBC)对标注数据集构建多个分类器进行投票,以计算未标注数据样本的类别不一致性,并综合考虑数据样本的分布密度,计算数据样本的信息量,作为主动学习的数据选择策略。鉴于人工标注数据量有限,在上述OAL方法的基础上,将主动学习与半监督学习相结合,即在主动学习迭代过程中,将类别一致性高的部分数据样本自动标注,以增加训练数据中标注数据量,保证构建分类器的训练数据量。实验表明了该方法通过部分人工标注,相比半监督学习,能够为PU数据集构建更高准确率的分类器。