标记分布学习(label distribution learning,LDL)是一种用于解决标记多义性的新颖学习范式。现有的LDL方法大多基于完整数据信息进行设计,然而由于高昂的标注成本以及标注人员水平的局限性,很难获取到完整标注数据信息,且会导致传统LDL...标记分布学习(label distribution learning,LDL)是一种用于解决标记多义性的新颖学习范式。现有的LDL方法大多基于完整数据信息进行设计,然而由于高昂的标注成本以及标注人员水平的局限性,很难获取到完整标注数据信息,且会导致传统LDL算法性能的下降。为此,本文提出了一种新型的结合局部序标记关系的弱监督标记分布学习算法,通过维持尚未缺失标记之间的相对关系,并利用标记相关性来恢复缺失的标记,在数据标注不完整的情况下提升算法性能。在14个数据集上进行了大量的实验来验证算法的有效性。展开更多
标记分布是一种新的学习范式,现有算法大多数直接使用条件概率建立参数模型,未充分考虑样本之间的相关性,导致计算复杂度增大。基于此,引入谱聚类算法,通过样本之间相似性关系将聚类问题转化为图的全局最优划分问题,进而提出一种结合谱...标记分布是一种新的学习范式,现有算法大多数直接使用条件概率建立参数模型,未充分考虑样本之间的相关性,导致计算复杂度增大。基于此,引入谱聚类算法,通过样本之间相似性关系将聚类问题转化为图的全局最优划分问题,进而提出一种结合谱聚类的标记分布学习算法(label distribution learning with spectral clustering,SC-LDL)。首先,计算样本相似度矩阵;然后,对矩阵进行拉普拉斯变换,构造特征向量空间;最后,通过K-means算法对数据进行聚类建立参数模型,预测未知样本的标记分布。与现有算法在多个数据集上的实验表明,本算法优于多个对比算法,统计假设检验进一步说明算法的有效性和优越性。展开更多
标记分布学习是在以标记分布标注的示例上学习的新型学习范式,近年来已成功应用于面部年龄估计、头部姿势估计和情感识别等实际场景中。在标记分布学习中,需要足够多的标记分布数据才能训练出预测性能好的模型。然而,标记分布学习有时...标记分布学习是在以标记分布标注的示例上学习的新型学习范式,近年来已成功应用于面部年龄估计、头部姿势估计和情感识别等实际场景中。在标记分布学习中,需要足够多的标记分布数据才能训练出预测性能好的模型。然而,标记分布学习有时会面临标记数据不足和注释成本太高的困境。基于边际概率分布匹配的主动标记分布学习(Active Label Distribution Learning Based on Marginal Probability Distribution Matching,ALDL-MMD)算法是针对标记分布学习注释成本过高的问题而设计的,以减少训练模型所需的标注数据量,从而降低注释成本。ALDL-MMD算法训练了一个线性回归模型,在保证其训练误差最小的同时,学习一个反映未标记数据上选点需求的稀疏向量,使选点后的训练集和未标记集的数据分布尽量相似,并对这个向量做松弛化处理,以简计算。在多个标记分布数据集上的实验结果表明,在“Canberra Metric”和“Intersection”这两个衡量标记分布的指标上,ALDL-MMD算法优于已有的主动示例选择方法,体现了其在降低注释成本方面的有效性。展开更多
文摘标记分布学习(label distribution learning,LDL)是一种用于解决标记多义性的新颖学习范式。现有的LDL方法大多基于完整数据信息进行设计,然而由于高昂的标注成本以及标注人员水平的局限性,很难获取到完整标注数据信息,且会导致传统LDL算法性能的下降。为此,本文提出了一种新型的结合局部序标记关系的弱监督标记分布学习算法,通过维持尚未缺失标记之间的相对关系,并利用标记相关性来恢复缺失的标记,在数据标注不完整的情况下提升算法性能。在14个数据集上进行了大量的实验来验证算法的有效性。
文摘标记分布是一种新的学习范式,现有算法大多数直接使用条件概率建立参数模型,未充分考虑样本之间的相关性,导致计算复杂度增大。基于此,引入谱聚类算法,通过样本之间相似性关系将聚类问题转化为图的全局最优划分问题,进而提出一种结合谱聚类的标记分布学习算法(label distribution learning with spectral clustering,SC-LDL)。首先,计算样本相似度矩阵;然后,对矩阵进行拉普拉斯变换,构造特征向量空间;最后,通过K-means算法对数据进行聚类建立参数模型,预测未知样本的标记分布。与现有算法在多个数据集上的实验表明,本算法优于多个对比算法,统计假设检验进一步说明算法的有效性和优越性。
文摘标记分布学习是在以标记分布标注的示例上学习的新型学习范式,近年来已成功应用于面部年龄估计、头部姿势估计和情感识别等实际场景中。在标记分布学习中,需要足够多的标记分布数据才能训练出预测性能好的模型。然而,标记分布学习有时会面临标记数据不足和注释成本太高的困境。基于边际概率分布匹配的主动标记分布学习(Active Label Distribution Learning Based on Marginal Probability Distribution Matching,ALDL-MMD)算法是针对标记分布学习注释成本过高的问题而设计的,以减少训练模型所需的标注数据量,从而降低注释成本。ALDL-MMD算法训练了一个线性回归模型,在保证其训练误差最小的同时,学习一个反映未标记数据上选点需求的稀疏向量,使选点后的训练集和未标记集的数据分布尽量相似,并对这个向量做松弛化处理,以简计算。在多个标记分布数据集上的实验结果表明,在“Canberra Metric”和“Intersection”这两个衡量标记分布的指标上,ALDL-MMD算法优于已有的主动示例选择方法,体现了其在降低注释成本方面的有效性。