期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于标签自适应选择的矩阵分解推荐算法 被引量:3
1
作者 宋威 李雪松 《计算机工程与科学》 CSCD 北大核心 2018年第10期1731-1736,共6页
将标签融入矩阵分解方法是当前推荐系统研究的热点。提出了一种基于标签自适应选择的矩阵分解推荐算法。首先,提出了标签-评分稀疏系数,较好地平衡了推荐过程中潜在特征与标签的使用问题。其次,利用标签的次数来计算标签向量,体现了标... 将标签融入矩阵分解方法是当前推荐系统研究的热点。提出了一种基于标签自适应选择的矩阵分解推荐算法。首先,提出了标签-评分稀疏系数,较好地平衡了推荐过程中潜在特征与标签的使用问题。其次,利用标签的次数来计算标签向量,体现了标签的不同频率对不同物品的影响。最后,给出了算法的总体描述。实验结果表明,算法具有较高的推荐精度和较快的收敛速度。 展开更多
关键词 推荐系统 矩阵分解 隐语义模型 标签自适应选择 标签-评分稀疏系数
在线阅读 下载PDF
基于注意力和标签自适应的跨域行人重识别
2
作者 陈思文 吴怀宇 陈洋 《高技术通讯》 CAS 2022年第2期143-151,共9页
针对现有的大多数行人重识别算法都依赖于监督训练,而监督训练中人工标注的数据需要昂贵的资源开销从而限制了其在新场景中拓展应用的问题,提出了基于注意力和标签自适应的跨域行人重识别方法。该方法首先对深度卷积神经网络(DCNN)中不... 针对现有的大多数行人重识别算法都依赖于监督训练,而监督训练中人工标注的数据需要昂贵的资源开销从而限制了其在新场景中拓展应用的问题,提出了基于注意力和标签自适应的跨域行人重识别方法。该方法首先对深度卷积神经网络(DCNN)中不同深度的特征层嵌入注意力机制和BNNeck模块,增强模型在不同数据集下对行人的特征表示能力;其次针对没有任何标签的目标数据集,提出了无监督标签自适应方法,将标签信息逐渐扩展至目标数据集中;最后采用知识蒸馏(KD)的方法不断对模型进行微调,使模型逐渐适应新的场景。该方法在Market-1501数据集上的平均精度均值(m AP)为33.1%,在DukeMTMC-reID数据集上的m AP为36.1%,与PTGAN、IPGAN等跨域行人重识别算法相比性能有明显提升。 展开更多
关键词 跨域行人重识别 注意力 标签自适应 知识蒸馏(KD) 深度卷积神经网络(DCNN)
在线阅读 下载PDF
基于多标签对抗领域自适应的行人属性识别算法
3
作者 胡强梁 陈琳 尚明生 《北京航空航天大学学报》 北大核心 2025年第7期2478-2487,共10页
针对无监督领域自适应算法通常局限于单标签学习问题,难以适配针对行人属性的多标签分类任务,提出一种多标签对抗领域自适应的行人属性识别算法。为适应行人属性多标签领域迁移任务,基于多标签特征分离模块,利用特定类别语义对主干网络... 针对无监督领域自适应算法通常局限于单标签学习问题,难以适配针对行人属性的多标签分类任务,提出一种多标签对抗领域自适应的行人属性识别算法。为适应行人属性多标签领域迁移任务,基于多标签特征分离模块,利用特定类别语义对主干网络提取的深度特征进行属性分离,有效提取特定属性的表征信息。针对不同领域属性特征分布差异较大的难点,提出基于分类器复用的多标签领域鉴别模块,同时实现多标签领域对齐和多标签分类,有效利用预测的鉴别信息捕获特征分布的多模式结构。实验结果表明:所提算法对比基准模型有明显提升,在平均准确率、准确率、召回率和F1指标上分别提升了4.49%、5.5%、11.44%和5.89%;所提算法为多标签领域自适应学习提供了新思路。 展开更多
关键词 行人属性识别 标签学习 标签领域自适应 多属性特征提取 标签分类
在线阅读 下载PDF
类别特征约束的多目标域表情识别方法 被引量:1
4
作者 范琪 王善敏 +1 位作者 刘成广 刘青山 《计算机工程与科学》 CSCD 北大核心 2024年第5期836-845,共10页
表情识别FER方法通常会受到采集环境和受试者区域、种族等因素的影响。为了提升FER方法的泛化性能,无监督的域自适应表情识别方法UDA-FER成为了研究热点。现有的UDA-FER方法普遍存在2个问题:(1)仅关注对目标域的识别率,导致方法从源域... 表情识别FER方法通常会受到采集环境和受试者区域、种族等因素的影响。为了提升FER方法的泛化性能,无监督的域自适应表情识别方法UDA-FER成为了研究热点。现有的UDA-FER方法普遍存在2个问题:(1)仅关注对目标域的识别率,导致方法从源域迁移至目标域后,对源域的识别率急剧下降;(2)仅研究基于单个目标域的UDA-FER方法,将现有方法直接应用于多个目标域会导致方法识别率骤降。为解决上述问题,提出了一种类别特征约束的多目标域表情识别方法MTD-FER,实现FER向多个目标域的连续迁移。为了保持对源域的识别率并提高对多个目标域的识别率,MTD-FER设计了类别自适应的伪标签标记CAPL模块和类别特征约束CWFC模块,挑选目标域高质量的样本标记为伪标签,并对齐各个域同类样本的特征,缓解连续迁移导致的灾难性遗忘问题。以RAF-DB为源域,FER-2013和ExpW为目标域,进行大量的实验,证明了MTD-FER的有效性。实验结果表明,与基准方法相比,MTD-FER在多次迁移后,源域识别率提升6.36%,与迁移之前基本持平;在各个目标域性能均有所提升,其中FER-2013性能提升了27.33%,ExpW性能提升了3.03%。 展开更多
关键词 人脸表情识别 无监督域自适应 多目标域 类别自适应的伪标签 类别特征约束
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部