传统数据增强技术,如同义词替换、随机插入和随机删除等,可能改变文本的原始语义,甚至导致关键信息丢失。此外,在文本分类任务中,数据通常包含文本部分和标签部分,然而传统数据增强方法仅针对文本部分。为解决这些问题,提出一种结合标...传统数据增强技术,如同义词替换、随机插入和随机删除等,可能改变文本的原始语义,甚至导致关键信息丢失。此外,在文本分类任务中,数据通常包含文本部分和标签部分,然而传统数据增强方法仅针对文本部分。为解决这些问题,提出一种结合标签混淆的数据增强(LCDA)技术,从文本和标签这2个基本方面入手,为数据提供全面的强化。在文本方面,通过对文本进行标点符号随机插入和替换以及句末标点符号补齐等增强,在保留全部文本信息和顺序的同时增加文本的多样性;在标签方面,采用标签混淆方法生成模拟标签分布替代传统的one-hot标签分布,以更好地反映实例和标签与标签之间的关系。在THUCNews(TsingHua University Chinese News)和Toutiao这2个中文新闻数据集构建的小样本数据集上分别结合TextCNN、TextRNN、BERT(Bidirectional Encoder Representations from Transformers)和RoBERTa-CNN(Robustly optimized BERT approach Convolutional Neural Network)文本分类模型的实验结果表明,与增强前相比,性能均得到显著提升。其中,在由THUCNews数据集构造的50-THU数据集上,4种模型结合LCDA技术后的准确率相较于增强前分别提高了1.19、6.87、3.21和2.89个百分点;相较于softEDA(Easy Data Augmentation with soft labels)方法增强的模型分别提高了0.78、7.62、1.75和1.28个百分点。通过在文本和标签这2个维度的处理结果可知,LCDA技术能显著提升模型的准确率,在数据量较少的应用场景中表现尤为突出。展开更多
目前,文本分类的研究主要集中在通过优化文本分类器来增强分类性能。然而,标签和文本之间的联系并没有得到很好的利用。尽管BERT对文本特征的处理表现出了非常好的效果,但对文本和标签的特征提取还有一定的提升空间。文中通过结合标签...目前,文本分类的研究主要集中在通过优化文本分类器来增强分类性能。然而,标签和文本之间的联系并没有得到很好的利用。尽管BERT对文本特征的处理表现出了非常好的效果,但对文本和标签的特征提取还有一定的提升空间。文中通过结合标签混淆模型(Label Confusion Model,LCM),提出一种基于BERT和LCM的文本分类模型(Model Based on BERT and Label Confusion,BLC),对文本和标签的特征进一步做了处理。充分利用BERT每一层的句向量和最后一层的词向量,结合双向长短时记忆网络(Bi-LSTM)得到文本表示,来替代BERT原始的文本特征表示。标签在进入LCM之前,使用自注意力网络和Bi-LSTM提高标签之间相互依赖关系,从而提高最终的分类性能。在4个文本分类基准数据集上的实验结果证明了所提模型的有效性。展开更多
文摘传统数据增强技术,如同义词替换、随机插入和随机删除等,可能改变文本的原始语义,甚至导致关键信息丢失。此外,在文本分类任务中,数据通常包含文本部分和标签部分,然而传统数据增强方法仅针对文本部分。为解决这些问题,提出一种结合标签混淆的数据增强(LCDA)技术,从文本和标签这2个基本方面入手,为数据提供全面的强化。在文本方面,通过对文本进行标点符号随机插入和替换以及句末标点符号补齐等增强,在保留全部文本信息和顺序的同时增加文本的多样性;在标签方面,采用标签混淆方法生成模拟标签分布替代传统的one-hot标签分布,以更好地反映实例和标签与标签之间的关系。在THUCNews(TsingHua University Chinese News)和Toutiao这2个中文新闻数据集构建的小样本数据集上分别结合TextCNN、TextRNN、BERT(Bidirectional Encoder Representations from Transformers)和RoBERTa-CNN(Robustly optimized BERT approach Convolutional Neural Network)文本分类模型的实验结果表明,与增强前相比,性能均得到显著提升。其中,在由THUCNews数据集构造的50-THU数据集上,4种模型结合LCDA技术后的准确率相较于增强前分别提高了1.19、6.87、3.21和2.89个百分点;相较于softEDA(Easy Data Augmentation with soft labels)方法增强的模型分别提高了0.78、7.62、1.75和1.28个百分点。通过在文本和标签这2个维度的处理结果可知,LCDA技术能显著提升模型的准确率,在数据量较少的应用场景中表现尤为突出。
文摘目前,文本分类的研究主要集中在通过优化文本分类器来增强分类性能。然而,标签和文本之间的联系并没有得到很好的利用。尽管BERT对文本特征的处理表现出了非常好的效果,但对文本和标签的特征提取还有一定的提升空间。文中通过结合标签混淆模型(Label Confusion Model,LCM),提出一种基于BERT和LCM的文本分类模型(Model Based on BERT and Label Confusion,BLC),对文本和标签的特征进一步做了处理。充分利用BERT每一层的句向量和最后一层的词向量,结合双向长短时记忆网络(Bi-LSTM)得到文本表示,来替代BERT原始的文本特征表示。标签在进入LCM之前,使用自注意力网络和Bi-LSTM提高标签之间相互依赖关系,从而提高最终的分类性能。在4个文本分类基准数据集上的实验结果证明了所提模型的有效性。