期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多标签关系图和局部动态重构学习的多标签分类模型
1
作者
胡婕
郑启扬
+1 位作者
孙军
张龑
《计算机应用》
北大核心
2025年第4期1104-1112,共9页
在多标签分类任务中,现有模型对依赖关系的构建主要考虑标签在训练集中是否共现,而忽视了标签之间各种不同类型的关系以及在不同样本中的动态交互关系。因此,结合多标签关系图和局部动态重构图学习更完整的标签依赖关系。首先,根据标签...
在多标签分类任务中,现有模型对依赖关系的构建主要考虑标签在训练集中是否共现,而忽视了标签之间各种不同类型的关系以及在不同样本中的动态交互关系。因此,结合多标签关系图和局部动态重构图学习更完整的标签依赖关系。首先,根据标签的全局共现关系,采用数据驱动的方式构建多标签关系图,学习标签之间不同类型的依赖关系;其次,通过标签注意力机制探索文本信息和标签语义的关联性;最后,对标签图进行动态重构学习,以捕获标签之间的局部特定关系。在3个公开数据集BibTeX、Delicious和Reuters-21578上的实验结果表明,所提模型的宏平均F1(maF1)值相较于MrMP(Multi-relation Message Passing)分别提高了1.6、1.0和2.2个百分点,综合性能得到提升。
展开更多
关键词
多
标签
分类
多
标签
关系图
标签
依赖关系
局部动态重构图
标签注意力机制
在线阅读
下载PDF
职称材料
融入类别标签和主题信息的用户兴趣识别方法
被引量:
1
2
作者
康智勇
李弼程
林煌
《计算机科学》
CSCD
北大核心
2024年第S01期661-668,共8页
社交网络用户兴趣发现对信息过载缓解、个性化推荐和信息传播正向引导等方面具有重要意义。目前已有的兴趣识别研究未能同时考虑文本主题信息及其对应的类别标签信息对模型学习文本特征的帮助,文中提出了一种融入类别标签和主题信息的...
社交网络用户兴趣发现对信息过载缓解、个性化推荐和信息传播正向引导等方面具有重要意义。目前已有的兴趣识别研究未能同时考虑文本主题信息及其对应的类别标签信息对模型学习文本特征的帮助,文中提出了一种融入类别标签和主题信息的用户兴趣识别方法。首先,利用BERT预训练模型、BiLSTM模型和多头自注意力机制分别获取文本和标签序列的语义特征;其次,引入标签注意力机制,使模型更加关注文本与其类别标签更相关的词语信息;然后,利用LDA主题模型和Word2Vec模型得到文本主题特征;接着,设计门控机制进行特征融合,使模型能够自适应地融合多种特征,进而实现微博文本兴趣类别分类;最后,统计用户发表的所有文本在各个兴趣类别上的数量,将数量最多的兴趣类别确定为用户兴趣识别结果。为验证所提方法的有效性,文中构建了一个微博兴趣识别数据集。实验结果表明,该模型在微博文本兴趣类别分类和用户兴趣识别任务中均取得了最优性能。
展开更多
关键词
社交网络
兴趣识别
主题模型
标签注意力机制
特征融合
在线阅读
下载PDF
职称材料
题名
基于多标签关系图和局部动态重构学习的多标签分类模型
1
作者
胡婕
郑启扬
孙军
张龑
机构
湖北大学计算机学院
大数据智能分析与行业应用湖北省重点实验室(湖北大学)
智慧政务与人工智能应用湖北省工程研究中心(湖北大学)
出处
《计算机应用》
北大核心
2025年第4期1104-1112,共9页
基金
国家自然科学基金资助项目(61977021)。
文摘
在多标签分类任务中,现有模型对依赖关系的构建主要考虑标签在训练集中是否共现,而忽视了标签之间各种不同类型的关系以及在不同样本中的动态交互关系。因此,结合多标签关系图和局部动态重构图学习更完整的标签依赖关系。首先,根据标签的全局共现关系,采用数据驱动的方式构建多标签关系图,学习标签之间不同类型的依赖关系;其次,通过标签注意力机制探索文本信息和标签语义的关联性;最后,对标签图进行动态重构学习,以捕获标签之间的局部特定关系。在3个公开数据集BibTeX、Delicious和Reuters-21578上的实验结果表明,所提模型的宏平均F1(maF1)值相较于MrMP(Multi-relation Message Passing)分别提高了1.6、1.0和2.2个百分点,综合性能得到提升。
关键词
多
标签
分类
多
标签
关系图
标签
依赖关系
局部动态重构图
标签注意力机制
Keywords
multi-label classification
multi-label relational graph
label dependency
local dynamic reconstruction graph
label attention mechanism
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
融入类别标签和主题信息的用户兴趣识别方法
被引量:
1
2
作者
康智勇
李弼程
林煌
机构
华侨大学计算机科学与技术学院
出处
《计算机科学》
CSCD
北大核心
2024年第S01期661-668,共8页
基金
装备预研教育部联合基金(8091B022150)。
文摘
社交网络用户兴趣发现对信息过载缓解、个性化推荐和信息传播正向引导等方面具有重要意义。目前已有的兴趣识别研究未能同时考虑文本主题信息及其对应的类别标签信息对模型学习文本特征的帮助,文中提出了一种融入类别标签和主题信息的用户兴趣识别方法。首先,利用BERT预训练模型、BiLSTM模型和多头自注意力机制分别获取文本和标签序列的语义特征;其次,引入标签注意力机制,使模型更加关注文本与其类别标签更相关的词语信息;然后,利用LDA主题模型和Word2Vec模型得到文本主题特征;接着,设计门控机制进行特征融合,使模型能够自适应地融合多种特征,进而实现微博文本兴趣类别分类;最后,统计用户发表的所有文本在各个兴趣类别上的数量,将数量最多的兴趣类别确定为用户兴趣识别结果。为验证所提方法的有效性,文中构建了一个微博兴趣识别数据集。实验结果表明,该模型在微博文本兴趣类别分类和用户兴趣识别任务中均取得了最优性能。
关键词
社交网络
兴趣识别
主题模型
标签注意力机制
特征融合
Keywords
Social network
Interest recognition
Topic model
Label attention mechanism
Feature fusion
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多标签关系图和局部动态重构学习的多标签分类模型
胡婕
郑启扬
孙军
张龑
《计算机应用》
北大核心
2025
0
在线阅读
下载PDF
职称材料
2
融入类别标签和主题信息的用户兴趣识别方法
康智勇
李弼程
林煌
《计算机科学》
CSCD
北大核心
2024
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部