期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于垂直集成Tri-training的虚假评论检测模型
被引量:
1
1
作者
尹春勇
朱宇航
《计算机应用》
CSCD
北大核心
2020年第8期2194-2201,共8页
针对虚假评论会误导用户的偏向并使其利益遭受损失以及大规模人工标注评论的代价过高等问题,通过利用以往迭代过程中生成的分类模型来提高检测的准确性,提出一种基于垂直集成的Tri-training(VETT)的虚假评论检测模型。该模型在评论文本...
针对虚假评论会误导用户的偏向并使其利益遭受损失以及大规模人工标注评论的代价过高等问题,通过利用以往迭代过程中生成的分类模型来提高检测的准确性,提出一种基于垂直集成的Tri-training(VETT)的虚假评论检测模型。该模型在评论文本特征的基础上结合用户行为特征作为特征进行提取。在VETT算法中,迭代过程被分成组内垂直集成和组间水平集成两部分:组内集成是利用分类器以往的迭代模型集成为一个原始分类器,而组间集成是利用3个原始分类器通过传统过程训练得到这一轮迭代后的二代分类器,以此来提高标签标记的准确率。对比Co-training、Tri-training、基于AUC优化的PU学习(PU-AUC)和基于垂直集成的Co-training(VECT)等算法,VETT算法的F1值分别最大提高了6.5、5.08、4.27和4.23个百分点。实验结果表明VETT算法有较好的分类性能。
展开更多
关键词
虚假评论
垂直集成
TRI-TRAINING
迭代分类器
标签准确率
在线阅读
下载PDF
职称材料
题名
基于垂直集成Tri-training的虚假评论检测模型
被引量:
1
1
作者
尹春勇
朱宇航
机构
南京信息工程大学计算机与软件学院
出处
《计算机应用》
CSCD
北大核心
2020年第8期2194-2201,共8页
基金
国家自然科学基金资助项目(61772282)。
文摘
针对虚假评论会误导用户的偏向并使其利益遭受损失以及大规模人工标注评论的代价过高等问题,通过利用以往迭代过程中生成的分类模型来提高检测的准确性,提出一种基于垂直集成的Tri-training(VETT)的虚假评论检测模型。该模型在评论文本特征的基础上结合用户行为特征作为特征进行提取。在VETT算法中,迭代过程被分成组内垂直集成和组间水平集成两部分:组内集成是利用分类器以往的迭代模型集成为一个原始分类器,而组间集成是利用3个原始分类器通过传统过程训练得到这一轮迭代后的二代分类器,以此来提高标签标记的准确率。对比Co-training、Tri-training、基于AUC优化的PU学习(PU-AUC)和基于垂直集成的Co-training(VECT)等算法,VETT算法的F1值分别最大提高了6.5、5.08、4.27和4.23个百分点。实验结果表明VETT算法有较好的分类性能。
关键词
虚假评论
垂直集成
TRI-TRAINING
迭代分类器
标签准确率
Keywords
fake review
vertical ensemble
Tri-training
iterative classifier
label accuracy
分类号
TP393.0 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于垂直集成Tri-training的虚假评论检测模型
尹春勇
朱宇航
《计算机应用》
CSCD
北大核心
2020
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部