期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
有限标记样本下基于GSSL-GraphSage的半监督故障诊断方法
1
作者 曹洁 王庭义 王进花 《控制理论与应用》 北大核心 2025年第5期892-902,共11页
鉴于在实际工程中采集的齿轮箱标注监测数据是有限的,且基于图神经网络的齿轮箱故障诊断方法研究仍存在标签信息挖掘不充分的问题,本文提出一种有限标记样本下基于图的半监督学习(GSSL)与图采样聚合算法(GraphSage)的齿轮箱半监督故障... 鉴于在实际工程中采集的齿轮箱标注监测数据是有限的,且基于图神经网络的齿轮箱故障诊断方法研究仍存在标签信息挖掘不充分的问题,本文提出一种有限标记样本下基于图的半监督学习(GSSL)与图采样聚合算法(GraphSage)的齿轮箱半监督故障诊断方法.基于K最近邻算法和基于图的标签传播策略,将标签信息沿边传播给分布相似的邻域样本,从而充分利用有限样本的标签信息,提高模型性能.将每个振动频谱样本视为一个节点构建基于图的半监督学习框架,最后将半监督学习框架输入到节点级GraphSage网络中进行故障分类,避免新加入节点重新训练的情况,可有效防止训练过拟合,增强泛化能力.将所提方法用于分析齿轮箱故障实验数据,结果表明所提方法能够在6%的低标签情况下准确诊断齿轮箱的不同故障模式,验证了对齿轮箱故障诊断的可行性和有效性. 展开更多
关键词 故障诊断 GraphSage网络 有限标记样本 半监督学习 标签传播策略
在线阅读 下载PDF
适用于大规模信息网络的语义社区发现方法 被引量:1
2
作者 沈桂兰 贾彩燕 +1 位作者 于剑 杨小平 《计算机科学与探索》 CSCD 北大核心 2017年第4期565-576,共12页
对节点带有内容的信息网络进行语义社区发现是新的研究方向。融合节点内容增加了算法的复杂度。提出了一种在线性时间内进行语义社区发现的标签传播算法,用LDA(latent Dirichlet allocation)主题模型表示节点内容,以节点内容相似度和传... 对节点带有内容的信息网络进行语义社区发现是新的研究方向。融合节点内容增加了算法的复杂度。提出了一种在线性时间内进行语义社区发现的标签传播算法,用LDA(latent Dirichlet allocation)主题模型表示节点内容,以节点内容相似度和传播影响力的乘性模型作为标签传播的策略,在归一化过程中,自然融合节点内容和网络结构信息,标签迭代过程中,采用节点与绝大部分邻居节点内容不相同才进行更新的策略,保证算法的运行效率。通过在不同规模的12个真实数据集上进行实验,以模块度和纯度作为度量标准,验证了算法在语义社区发现上的有效性和可行性。 展开更多
关键词 语义社区发现 LDA主题模型 内容相似度 标签传播策略 传播影响力
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部