In the study of oriented bounding boxes(OBB)object detection in high-resolution remote sensing images,the problem of missed and wrong detection of small targets occurs because the targets are too small and have differ...In the study of oriented bounding boxes(OBB)object detection in high-resolution remote sensing images,the problem of missed and wrong detection of small targets occurs because the targets are too small and have different orientations.Existing OBB object detection for remote sensing images,although making good progress,mainly focuses on directional modeling,while less consideration is given to the size of the object as well as the problem of missed detection.In this study,a method based on improved YOLOv8 was proposed for detecting oriented objects in remote sensing images,which can improve the detection precision of oriented objects in remote sensing images.Firstly,the ResCBAMG module was innovatively designed,which could better extract channel and spatial correlation information.Secondly,the innovative top-down feature fusion layer network structure was proposed in conjunction with the Efficient Channel Attention(ECA)attention module,which helped to capture inter-local cross-channel interaction information appropriately.Finally,we introduced an innovative ResCBAMG module between the different C2f modules and detection heads of the bottom-up feature fusion layer.This innovative structure helped the model to better focus on the target area.The precision and robustness of oriented target detection were also improved.Experimental results on the DOTA-v1.5 dataset showed that the detection Precision,mAP@0.5,and mAP@0.5:0.95 metrics of the improved model are better compared to the original model.This improvement is effective in detecting small targets and complex scenes.展开更多
A novel approach was presented to solve the navigation problem of autonomous mobile robots in unknown environments with dense obstacles based on a univector field method. In an obstacle-free environment, a robot is en...A novel approach was presented to solve the navigation problem of autonomous mobile robots in unknown environments with dense obstacles based on a univector field method. In an obstacle-free environment, a robot is ensured to reach the goal position with the desired posture by following the univector field. Contrariwise, the univector field cannot guarantee that the robot will avoid obstacles in environments. In order to create an intelligent mobile robot being able to perform the obstacle avoidance task while following the univector field, Dyna-Q algorithm is developed to train the robot in learning moving directions to attain a collision-free path for its navigation. Simulations on the computer as well as experiments on the real world prove that the proposed algorithm is efficient for training the robot in reaching the goal position with the desired final orientation.展开更多
文摘In the study of oriented bounding boxes(OBB)object detection in high-resolution remote sensing images,the problem of missed and wrong detection of small targets occurs because the targets are too small and have different orientations.Existing OBB object detection for remote sensing images,although making good progress,mainly focuses on directional modeling,while less consideration is given to the size of the object as well as the problem of missed detection.In this study,a method based on improved YOLOv8 was proposed for detecting oriented objects in remote sensing images,which can improve the detection precision of oriented objects in remote sensing images.Firstly,the ResCBAMG module was innovatively designed,which could better extract channel and spatial correlation information.Secondly,the innovative top-down feature fusion layer network structure was proposed in conjunction with the Efficient Channel Attention(ECA)attention module,which helped to capture inter-local cross-channel interaction information appropriately.Finally,we introduced an innovative ResCBAMG module between the different C2f modules and detection heads of the bottom-up feature fusion layer.This innovative structure helped the model to better focus on the target area.The precision and robustness of oriented target detection were also improved.Experimental results on the DOTA-v1.5 dataset showed that the detection Precision,mAP@0.5,and mAP@0.5:0.95 metrics of the improved model are better compared to the original model.This improvement is effective in detecting small targets and complex scenes.
基金Project(2010-0012609) supported by the Basic Science Research Program,Korea
文摘A novel approach was presented to solve the navigation problem of autonomous mobile robots in unknown environments with dense obstacles based on a univector field method. In an obstacle-free environment, a robot is ensured to reach the goal position with the desired posture by following the univector field. Contrariwise, the univector field cannot guarantee that the robot will avoid obstacles in environments. In order to create an intelligent mobile robot being able to perform the obstacle avoidance task while following the univector field, Dyna-Q algorithm is developed to train the robot in learning moving directions to attain a collision-free path for its navigation. Simulations on the computer as well as experiments on the real world prove that the proposed algorithm is efficient for training the robot in reaching the goal position with the desired final orientation.