期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
结合区域检测和注意力机制的胸片自动定位与识别 被引量:1
1
作者 朱伟 张帅 +4 位作者 辛晓燕 李文飞 王骏 张建 王炜 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第4期591-600,共10页
胸部X光片(以下简称胸片)是胸部相关疾病的常用诊断手段,具有辐射量低、速度快、价格低廉等优点,但样本数量巨大,所以开发基于人工智能的、对胸片进行自动识别、分类以及定位的系统具有重大的应用价值.由于胸片拍摄设备不同、胸片质量... 胸部X光片(以下简称胸片)是胸部相关疾病的常用诊断手段,具有辐射量低、速度快、价格低廉等优点,但样本数量巨大,所以开发基于人工智能的、对胸片进行自动识别、分类以及定位的系统具有重大的应用价值.由于胸片拍摄设备不同、胸片质量参差不齐、涉及疾病众多,尤其是缺乏标注框数据集等问题,将深度学习用于胸片的疾病检测和定位仍是一项具有挑战性的任务.为此构建了胸片标注框数据集Chest‐box,该数据集中包含3952张阳性胸片和9960个标注框.基于此数据集,提出并训练了一个区域检测网络模型,用于提取胸片中所有可能的病变区域,即图像处理领域中的感兴趣区域.以区域检测网络提取的感兴趣区域为注意力信息,进一步发展了DenseNet卷积网络和注意力机制相结合的方法,通过融合原始胸片和感兴趣区域的特征,使模型更专注于感兴趣区域,再对疾病进行识别和定位.在ChestX‐ray14数据集上的测试表明,该网络模型相比之前的工作,具有极佳的分类性能,并能提供更好的疾病定位信息. 展开更多
关键词 胸片 深度学习 卷积神经网络 标注框数据集 区域检测网络 注意力机制网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部