为研究农业机械与水田壤土间的相互作用,需获取水田壤土的物理及接触参数。结合物理堆积试验,以休止角作为响应值,采用离散元法(DEM)并选取Hertz-Mindlin with JKR(Johnson-Kendall-Roberts)接触模型对长江中游地区水田壤土展开参数标...为研究农业机械与水田壤土间的相互作用,需获取水田壤土的物理及接触参数。结合物理堆积试验,以休止角作为响应值,采用离散元法(DEM)并选取Hertz-Mindlin with JKR(Johnson-Kendall-Roberts)接触模型对长江中游地区水田壤土展开参数标定研究。首先,通过物理堆积试验获取了壤土休止角(AoR)与含水率间的定量关系,由不同含水率土壤的堆积结果筛分出4种代表性堆积形态,由于水田壤土堆积体轮廓外形比较独特,因此仅对其左右两侧轮廓采用三次多项式进行局部拟合,计算其休止角。以长江中游地区水田壤土成因和预试验为依据来确定其离散元模型中9个参数的高低水平值,通过Plackett-Burman试验设计进行方差分析,发现壤土剪切模量、壤土间动摩擦因数、壤土与不锈钢间静摩擦因数和JKR表面能对AoR影响明显。然后,采用基于响应面法(RSM)原理的Box-Behnken试验设计(BBD)建立了AoR与4个显著性参数间的二次多项式回归模型。依据二次多项式回归模型对目标响应进行预测,得到最优参数组合。以此为基础对壤土AoR进行离散元仿真,AoR数值计算结果(45.4°)与试验结果(44.6°)相对误差为1.79%。最后,选取含水率分别为44.4%、48.7%的壤土进行堆积角仿真模拟,计算结果与堆积试验相对误差分别为2.8%、7.14%。研究表明:回归模型可以根据壤土含水率或AoR预测长江中游地区水田壤土的相关本征参数和接触参数。展开更多
为探究种植菌草的丘陵地区土壤间、土壤与移栽触土部件间相互作用的规律并获取其仿真参数,运用Hertz—Mindlin with JKR接触模型对特定的12%±1%和20%±1%的含水率土壤—移栽触土部件进行离散元参数标定。开展土壤堆积角物理试...为探究种植菌草的丘陵地区土壤间、土壤与移栽触土部件间相互作用的规律并获取其仿真参数,运用Hertz—Mindlin with JKR接触模型对特定的12%±1%和20%±1%的含水率土壤—移栽触土部件进行离散元参数标定。开展土壤堆积角物理试验、土球斜面滚动物理试验。以土壤颗粒间、土壤与移栽触土部件间的表面能、恢复系数、动摩擦系数、静摩擦系数为标定对象,设计旋转中心组合试验并以仿真的土壤堆积角、土球在65Mn板上滚动距离为响应值,采用Box—Behnken对试验数据回归分析,以实测的土壤堆积角、土球滚动距离为优化目标,采用两种典型含水率下土壤与触土材料(65Mn)的静摩擦系数为约束条件,得到两种典型含水率的土壤间、土壤与移栽触土部件的离散元参数:含水率分别为12%±1%、20%±1%时,土壤颗粒间表面能、恢复系数、动摩擦系数、静摩擦系数为11.042 J/m^(2)和11.851 J/m^(2)、0.412和0.574、0.093和0.129、0.994和1.009;土壤与触土部件表面能、恢复系数、动摩擦系数为5.046 J/m^(2)、8.026 J/m^(2),0.362、0.388和0.066、0.07。为验证优化后离散元参数的准确性,开展验证试验得:两种典型含水率土壤仿真、物理堆积角相对误差为0.96%、0.95%,仿真、物理滚动试验相对误差为0.52%、1%。结果表明,优化标定后的土壤模型参数能够仿真该地区真实的菌草土壤模型,可为菌草移栽械关键部件的设计与优化提供重要理论依据。展开更多
为解决利用离散元法对艾草机械化收割、脱叶和切碎等关键作业环节进行仿真分析时缺乏准确模型的问题,采用物理试验与仿真试验相结合的方法,以成熟期新鲜艾草茎秆为研究对象,基于EDEM仿真软件中的Hertz-Mindlin(no slip)模型和Hertz-Mind...为解决利用离散元法对艾草机械化收割、脱叶和切碎等关键作业环节进行仿真分析时缺乏准确模型的问题,采用物理试验与仿真试验相结合的方法,以成熟期新鲜艾草茎秆为研究对象,基于EDEM仿真软件中的Hertz-Mindlin(no slip)模型和Hertz-Mindlin with bonding模型对茎秆物理参数和黏结参数进行标定。通过Plackett-Burman试验、最陡爬坡试验和Central-Composite试验确定艾草茎秆接触参数和黏结参数,并利用艾草茎秆堆积角台架试验和剪切物理试验验证参数值的准确性。结果表明:艾草茎秆间的碰撞恢复系数、静摩擦因数和动摩擦因数分别为0.13、1.09和0.026;艾草茎秆与作业装备间的碰撞恢复系数、静摩擦因数和动摩擦因数分别为0.43、0.73和0.0156;艾草茎秆法向接触刚度、切向接触刚度、临界法向应力和临界切向应力分别为3.91×10^(9)N/m、2.43×10^(9)N/m、4.35×10^(6)Pa和6.14×10^(6)Pa;堆积角台架试验和剪切物理试验验证出的相对误差分别为0.96%、2.89%,误差较小。艾草茎秆离散元模型及标定的仿真参数准确可靠,能够真实反映其物理和力学特性,为艾草茎秆离散元仿真研究提供参考。展开更多
针对菲律宾蛤仔等埋栖贝类采收作业时底质颗粒间缺乏准确的接触参数,该研究以辽宁丹东大鹿岛菲律宾蛤仔养殖区浅海底质为研究对象,选取EDEM中Hertz-Mindlin with JKR接触模型,对底质颗粒间接触参数进行标定。通过物理试验测定了浅海底...针对菲律宾蛤仔等埋栖贝类采收作业时底质颗粒间缺乏准确的接触参数,该研究以辽宁丹东大鹿岛菲律宾蛤仔养殖区浅海底质为研究对象,选取EDEM中Hertz-Mindlin with JKR接触模型,对底质颗粒间接触参数进行标定。通过物理试验测定了浅海底质含水率、容重、内摩擦角、粘聚力和泊松比。基于漏斗法测定了浅海底质堆积角,确定了需要标定接触参数的范围为:JKR表面能4.50~18.00 J/m^(2)、碰撞恢复系数0.35~0.75、静摩擦系数0.20~1.04、滚动摩擦系数0.10~0.20。通过Design-Expert软件的优化模块对模型寻优得到JKR表面能、碰撞恢复系数、静摩擦系数、滚动摩擦系数分别为10.96 J/m^(2)、0.37、0.63、0.10,在该最优解下仿真试验所得堆积角为49.83°,与物理试验所得的堆积角(51.00°)相对误差为2.29%。通过旋切试验对底质间接触参数进行验证,在物理试验与仿真试验中,旋切机构刀轴扭矩相对误差为7.76%,相对误差较小,结果表明标定的参数准确可靠,可为后续研究浅海底质-蛤仔-采收机构互作机制提供重要参考。展开更多
文摘为研究农业机械与水田壤土间的相互作用,需获取水田壤土的物理及接触参数。结合物理堆积试验,以休止角作为响应值,采用离散元法(DEM)并选取Hertz-Mindlin with JKR(Johnson-Kendall-Roberts)接触模型对长江中游地区水田壤土展开参数标定研究。首先,通过物理堆积试验获取了壤土休止角(AoR)与含水率间的定量关系,由不同含水率土壤的堆积结果筛分出4种代表性堆积形态,由于水田壤土堆积体轮廓外形比较独特,因此仅对其左右两侧轮廓采用三次多项式进行局部拟合,计算其休止角。以长江中游地区水田壤土成因和预试验为依据来确定其离散元模型中9个参数的高低水平值,通过Plackett-Burman试验设计进行方差分析,发现壤土剪切模量、壤土间动摩擦因数、壤土与不锈钢间静摩擦因数和JKR表面能对AoR影响明显。然后,采用基于响应面法(RSM)原理的Box-Behnken试验设计(BBD)建立了AoR与4个显著性参数间的二次多项式回归模型。依据二次多项式回归模型对目标响应进行预测,得到最优参数组合。以此为基础对壤土AoR进行离散元仿真,AoR数值计算结果(45.4°)与试验结果(44.6°)相对误差为1.79%。最后,选取含水率分别为44.4%、48.7%的壤土进行堆积角仿真模拟,计算结果与堆积试验相对误差分别为2.8%、7.14%。研究表明:回归模型可以根据壤土含水率或AoR预测长江中游地区水田壤土的相关本征参数和接触参数。
文摘为解决利用离散元法对艾草机械化收割、脱叶和切碎等关键作业环节进行仿真分析时缺乏准确模型的问题,采用物理试验与仿真试验相结合的方法,以成熟期新鲜艾草茎秆为研究对象,基于EDEM仿真软件中的Hertz-Mindlin(no slip)模型和Hertz-Mindlin with bonding模型对茎秆物理参数和黏结参数进行标定。通过Plackett-Burman试验、最陡爬坡试验和Central-Composite试验确定艾草茎秆接触参数和黏结参数,并利用艾草茎秆堆积角台架试验和剪切物理试验验证参数值的准确性。结果表明:艾草茎秆间的碰撞恢复系数、静摩擦因数和动摩擦因数分别为0.13、1.09和0.026;艾草茎秆与作业装备间的碰撞恢复系数、静摩擦因数和动摩擦因数分别为0.43、0.73和0.0156;艾草茎秆法向接触刚度、切向接触刚度、临界法向应力和临界切向应力分别为3.91×10^(9)N/m、2.43×10^(9)N/m、4.35×10^(6)Pa和6.14×10^(6)Pa;堆积角台架试验和剪切物理试验验证出的相对误差分别为0.96%、2.89%,误差较小。艾草茎秆离散元模型及标定的仿真参数准确可靠,能够真实反映其物理和力学特性,为艾草茎秆离散元仿真研究提供参考。
文摘针对菲律宾蛤仔等埋栖贝类采收作业时底质颗粒间缺乏准确的接触参数,该研究以辽宁丹东大鹿岛菲律宾蛤仔养殖区浅海底质为研究对象,选取EDEM中Hertz-Mindlin with JKR接触模型,对底质颗粒间接触参数进行标定。通过物理试验测定了浅海底质含水率、容重、内摩擦角、粘聚力和泊松比。基于漏斗法测定了浅海底质堆积角,确定了需要标定接触参数的范围为:JKR表面能4.50~18.00 J/m^(2)、碰撞恢复系数0.35~0.75、静摩擦系数0.20~1.04、滚动摩擦系数0.10~0.20。通过Design-Expert软件的优化模块对模型寻优得到JKR表面能、碰撞恢复系数、静摩擦系数、滚动摩擦系数分别为10.96 J/m^(2)、0.37、0.63、0.10,在该最优解下仿真试验所得堆积角为49.83°,与物理试验所得的堆积角(51.00°)相对误差为2.29%。通过旋切试验对底质间接触参数进行验证,在物理试验与仿真试验中,旋切机构刀轴扭矩相对误差为7.76%,相对误差较小,结果表明标定的参数准确可靠,可为后续研究浅海底质-蛤仔-采收机构互作机制提供重要参考。