期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
标准神经网络模型及其应用 被引量:3
1
作者 颜钢锋 张森林 刘妹琴 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2004年第3期297-301,350,共6页
提出一种新的神经网络模型——标准神经网络模型(SNNM),它由线性动力学系统和有界静态非线性算子连接而成.SNNM表示为线性微分包含(LDI)形式,可以方便地利用线性矩阵不等式(LMI)方法来分析其稳定性和其他性能.利用不同的Lyapunov函数和... 提出一种新的神经网络模型——标准神经网络模型(SNNM),它由线性动力学系统和有界静态非线性算子连接而成.SNNM表示为线性微分包含(LDI)形式,可以方便地利用线性矩阵不等式(LMI)方法来分析其稳定性和其他性能.利用不同的Lyapunov函数和S方法推导出基于LMI的连续SNNM和离散SNNM的稳定性定理.实例表明SNNM可应用于递归神经网络的稳定性分析以及神经网络控制系统的综合和分析. 展开更多
关键词 标准神经网络模型 离散时间 线性矩阵不等式 线性微分包含 非线性控制
在线阅读 下载PDF
离散时滞标准神经网络模型的鲁棒稳定性分析 被引量:1
2
作者 张建海 张森林 刘妹琴 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2009年第8期1383-1388,共6页
研究了离散时滞标准神经网络模型(SNNM)的鲁棒渐进稳定性和指数稳定性问题,结合Lyapunov稳定性理论和S方法推导出了两种稳定性的充分条件.所得到的稳定性条件被表示为线性矩阵不等式形式,便于求解.特别的,将鲁棒指数稳定性问题转化为一... 研究了离散时滞标准神经网络模型(SNNM)的鲁棒渐进稳定性和指数稳定性问题,结合Lyapunov稳定性理论和S方法推导出了两种稳定性的充分条件.所得到的稳定性条件被表示为线性矩阵不等式形式,便于求解.特别的,将鲁棒指数稳定性问题转化为一个广义特征值问题,除了可以判断网络的指数稳定性,还可以方便地估计其最大指数收敛率.在数值示例中,将两类递归神经网络(RNNs)转化为SNNM的形式并利用得到的相关结论对其鲁棒稳定性进行了分析,仿真结果验证了稳定性判据的有效性.SNNM为分析递归网络提供了新的思路,简单且有效. 展开更多
关键词 标准神经网络模型(SNNM) 离散时滞系统 鲁棒稳定性 线性矩阵不等式(LMI)
在线阅读 下载PDF
时滞标准神经网络模型及其应用 被引量:4
3
作者 刘妹琴 《自动化学报》 EI CSCD 北大核心 2005年第5期750-758,共9页
提出一种新的神经网络模型—时滞标准神经网络模型(DSNNM),它由线性动力学系统和有界静态时滞非线性算子连接而成.利用不同的Lyapunov 泛函和S 方法推导出DSNNM 全局渐近稳定性和全局指数稳定性的充分条件,这些条件可表示为线性矩阵不等... 提出一种新的神经网络模型—时滞标准神经网络模型(DSNNM),它由线性动力学系统和有界静态时滞非线性算子连接而成.利用不同的Lyapunov 泛函和S 方法推导出DSNNM 全局渐近稳定性和全局指数稳定性的充分条件,这些条件可表示为线性矩阵不等式(LMI)形式.大多数时滞(或非时滞)动态神经网络(DANN)稳定性分析或神经网络控制系统都可以转化为DSNNM,以便用统一的方法进行稳定性分析或镇定控制.从DSNNM 应用于时滞联想记忆(BAM)神经网络的稳定性分析以及PH 中和过程神经控制器的综合实例, 可以看出,得到的稳定性判据扩展并改进了以往文献中的稳定性定理,而且可将稳定性分析推广到非线性控制系统的综合. 展开更多
关键词 时滞标准神经网络模型(DSNNM) 线性矩阵不等式(LMI) 稳定性 广义特征值问题(GEVP) 双向联想记忆(BAM)
在线阅读 下载PDF
新的时滞递归神经网络鲁棒稳定性分析方法 被引量:1
4
作者 张建海 张森林 刘妹琴 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2009年第3期434-441,共8页
通过引入标准神经网络模型(SNNM),为不同的递归神经网络(RNN)提供了一个统一分析框架.针对时滞SNNM的鲁棒渐进稳定和指数稳定问题,应用Lyapunov稳定性理论和S方法推导出基于线性矩阵不等式的充分条件.将鲁棒指数稳定性问题转化为一个广... 通过引入标准神经网络模型(SNNM),为不同的递归神经网络(RNN)提供了一个统一分析框架.针对时滞SNNM的鲁棒渐进稳定和指数稳定问题,应用Lyapunov稳定性理论和S方法推导出基于线性矩阵不等式的充分条件.将鲁棒指数稳定性问题转化为一个广义特征值问题,既可以判断网络是否指数稳定,又可以方便地估计其最大指数收敛率,克服了以往方法中存在的不足.给出了将其他RNNs转化为SNNM的实例,并利用SNNM的相关结论对其进行了分析.仿真结果表明,该方法可以方便地对不同RNN的鲁棒稳定性进行分析,且稳定性条件易于求解. 展开更多
关键词 标准神经网络模型 时滞 递归神经网络 鲁棒渐进稳定性 鲁棒指数稳定性 线性矩阵不等式
在线阅读 下载PDF
基于LMI方法的时滞BAM神经网络的全局稳定性分析
5
作者 刘妹琴 颜钢锋 张森林 《电子与信息学报》 EI CSCD 北大核心 2004年第8期1237-1244,共8页
对于时滞双向联想记忆(DBAM)神经网络的平衡点的稳定性问题,目前人们已经得到了很多富有意义的成果.该文提出一种新的神经网络模型——标准神经网络模型(SNNM),通过状态的线性变换,将DBAM神经网络转化为时滞SNNM(DSNNM),并利用有关DSNN... 对于时滞双向联想记忆(DBAM)神经网络的平衡点的稳定性问题,目前人们已经得到了很多富有意义的成果.该文提出一种新的神经网络模型——标准神经网络模型(SNNM),通过状态的线性变换,将DBAM神经网络转化为时滞SNNM(DSNNM),并利用有关DSNNM的稳定性的一些结论,得到DBAM神经网络平衡点的全局渐近稳定性的充分条件.这些条件都以线性矩阵不等式(LMI)的形式给出,容易验证,保守性低.该方法扩展了以前的稳定性结果,同时也适用于其它类型的递归神经网络(时滞或非时滞)的稳定性分析. 展开更多
关键词 标准神经网络模型 时滞双向联想记忆神经网络 线性矩阵不等式 线性微分包含 全局渐近 稳定性
在线阅读 下载PDF
递归多层感知器的稳定性分析——LMI方法 被引量:5
6
作者 刘妹琴 颜钢锋 《控制理论与应用》 EI CAS CSCD 北大核心 2003年第6期897-902,共6页
递归多层感知器(RMLP)在工程上应用比较多,但对其稳定性的研究还比较少.本文提出一种新的神经网络模型———标准神经网络模型(SNNM),通过状态空间扩展法,将RMLP转化为SNNM,而SNNM的稳定性分析可转化为一组线性矩阵不等式(LMI)的求解,利... 递归多层感知器(RMLP)在工程上应用比较多,但对其稳定性的研究还比较少.本文提出一种新的神经网络模型———标准神经网络模型(SNNM),通过状态空间扩展法,将RMLP转化为SNNM,而SNNM的稳定性分析可转化为一组线性矩阵不等式(LMI)的求解,利用Matlab/LMIToolbox求解LMI,从而判定RMLP的Lyapunov稳定性,并考虑非零阈值对稳定性的影响.该方法也适用于其他类型的递归神经网络(RNN)的稳定性分析. 展开更多
关键词 递归多层感知器 稳定性分析 LMI方法 状态空间扩展法 线性矩阵不等式 标准神经网络模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部