期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
平均分布差异最小化的NIR标定迁移方法研究 被引量:1
1
作者 赵煜辉 芦鹏程 +1 位作者 罗昱博 单鹏 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2021年第10期3051-3057,共7页
凭借高效、无损和环保的优点,近红外光谱在多个领域广泛用作物质快速分析方法的同时,仍面临着光谱标定模型生命周期短,构建仪器标定迁移方法的标准样品难以获得和保存等问题。在化学计量学文献中,迁移方法通常能够矫正主从仪器之间的光... 凭借高效、无损和环保的优点,近红外光谱在多个领域广泛用作物质快速分析方法的同时,仍面临着光谱标定模型生命周期短,构建仪器标定迁移方法的标准样品难以获得和保存等问题。在化学计量学文献中,迁移方法通常能够矫正主从仪器之间的光谱差异,但绝大多数方法都需要在两台仪器相同条件下测量一组迁移标准样品。虽然样品数目不必过多,但总体上表明,必须对其进行很好的选择才能保证成功迁移。对于在主从仪器中选择代表性的样本子集,现有Kennard-Stone算法作为样本选择的主要算法。在标准样本的确定问题中,假设主仪器已找到标准样本,选择的样本集需要在从仪器中进行测量,仅当迁移样本足够稳定时才有可能,但现有近红外光谱技术无法保证这一点。如果假设使用从仪器的样本作为标准样本,考虑到新工业应用中光谱光源的变更,主仪器被从仪器代替,因此不再可用。基于目前存在的这些问题,提出了一种平均分布差异最小化的NIR标定迁移方法(MCT),此方法可以在不考虑从仪器标准样本(即标准样本自由)的情况下,针对近红外光谱数据的多重共线性,首先假设存在一个主从仪器光谱的共同偏最小二乘子空间,并将主从仪器光谱数据分别投影到该公共子空间;然后,引入平均分布差异最小化算法,即分别给出主从光谱数据在子空间的平均分布中心表示函数,在最小化两个光谱平均分布(中心点)的差异的同时,最大化投影后主仪器光谱的协方差,推导求解出最佳子空间;最后,将主光谱样本和从光谱预测样本分别投影到该偏最小二乘子空间中,利用主光谱数据得到回归模型,该模型可用于预测从光谱浓度。通过对玉米数据集和小麦数据集的测试研究,证明的预测效果与SBC,PDS,CCACT,TCR和MSC相比有所改善,该方法可以实现更低的预测误差。 展开更多
关键词 近红外光谱 标定迁移 平均分布差异 标准样本自由 偏最小二乘回归
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部