期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于集成深度强化学习的自动驾驶车辆行为决策模型 被引量:4
1
作者 张新锋 吴琳 《汽车安全与节能学报》 CAS CSCD 北大核心 2023年第4期472-479,共8页
提出一种基于集成的深度强化学习的自动驾驶车辆的行为决策模型。基于Markov决策过程(MDP)理论,采用标准投票法,将深度Q学习网络(DQN)、双DQN(DDQN)和竞争双DDQN(Dueling DDQN)等3种基础网络模型集成。在高速公路仿真环境、在单向3车道... 提出一种基于集成的深度强化学习的自动驾驶车辆的行为决策模型。基于Markov决策过程(MDP)理论,采用标准投票法,将深度Q学习网络(DQN)、双DQN(DDQN)和竞争双DDQN(Dueling DDQN)等3种基础网络模型集成。在高速公路仿真环境、在单向3车道、4车道、5车道数量场景下,对向左换道、车道保持、向右换道、同车道加速和减速等5种车辆驾驶行为,进行测试和泛化性验证。结果表明:与其它3种网络模型相比,该模型的决策成功率分别提高了6%、3%和6%;平均车速也有提升;100回合的测试,耗时小于1 ms,满足决策实时性要求。因而,该决策模型提高了行车安全和决策效率。 展开更多
关键词 自动驾驶 深度强化学习 集成学习 深度Q网络(DQN) 标准投票法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部