The worm wheel whose undercutting characteristic is researched is a member of offsetting normal arc-toothed cylindrical worm drive.The tooth profile of the worm in its offsetting normal section is a circular arc.The n...The worm wheel whose undercutting characteristic is researched is a member of offsetting normal arc-toothed cylindrical worm drive.The tooth profile of the worm in its offsetting normal section is a circular arc.The normal vector used to calculate the first-type limit function is determined in the natural frame without the aid of the curvature parameter of worm helicoid.The first-type limit line is ascertained via solving the nonlinear equations iteratively.It is discovered that one first-type limit line exists on the tooth surface of worm wheel by numerical simulation,and such a line is normally located out of the meshing zone.Only one intersection point exists between the first and second-types of limit lines,and this point is a lubrication weak point.The undercutting mechanism is essentially that a part of the meshing zone near the conjugated line of worm tooth crest will come into the undercutting area and will be cut off during machining the worm wheel.The machining simulation verifies the correctness of undercutting mechanism.Moreover,a convenient and practical characteristic quantity is proposed to judge whether the undercutting exists in the whole meshing zone via computing the first-type limit function values on the worm tooth crest.展开更多
Different solvothermal reactions of ZnC2O_(4)with oxalic acid(H_(2)ox)and 1,2,4-triazole(Htrz)successfully gave a new quaternary(NJTU-Bai83,NJTU-Bai=Nanjing Tech University Bai's group)and a new quinary(NJTU-Bai84...Different solvothermal reactions of ZnC2O_(4)with oxalic acid(H_(2)ox)and 1,2,4-triazole(Htrz)successfully gave a new quaternary(NJTU-Bai83,NJTU-Bai=Nanjing Tech University Bai's group)and a new quinary(NJTU-Bai84)anionic metal-organic frameworks(MOFs),where NJTU-Bai83=(Me_(2)NH_(2))2[Zn_(3)(trz)_(2)(ox)_(3)]·2H_(2)O and NJTU-Bai84=(Me_(2)NH_(2))[Zn_(3)(trz)_(3)(ox)_(2)]·H_(2)O,respectively.With the[Zn_(2)(ox)4(trz)_(2)]secondary building unit(SBU)in NJTU-Bai83 replaced by the[Zn_(3)(ox)_(2)(trz)_(6)]and planar[Zn(ox)_(2)(trz)_(2)]ones in NJTU-Bai84,2D supramolecular building layers(SBLs)are changed from the A-layer and B-layer to another A-layer,while pillars are transformed from the tetrahedral[Zn(ox)_(2)(trz)_(2)]SBU to the irregular tetrahedral[Zn(ox)_(2)(trz)_(2)]and planar[Zn(ox)_(2)(trz)_(2)]SBUs.Thus,cdq-topological quaternary NJTU-Bai83 is tuned to(4,4,8)-c new topological quinary NJTU-Bai84.Two MOFs were well characterized by powder X-ray diffraction,thermogravimetric analysis,elemental analysis,etc.CCDC:2351819,NJTU-Bai83;2351820,NJTU-Bai84.展开更多
In order to study and analyze the stability of engineering rock mass under non-uniform triaxial stress and obtain the evolution mechanism of the whole process of fracture,a series of conventional triaxial compression ...In order to study and analyze the stability of engineering rock mass under non-uniform triaxial stress and obtain the evolution mechanism of the whole process of fracture,a series of conventional triaxial compression tests and three-dimensional numerical simulation tests were carried out on hollow granite specimens with different diameters.The bearing capacity of hollow cylindrical specimen is analyzed based on elasticity.The results show that:1)Under low confining pressure,the tensile strain near the hole of the hollow cylindrical specimen is obvious,and the specimen deformation near the hole is significant.At the initial stage of loading,the compressive stress and compressive strain of the specimen are widely distributed.With the progress of loading,the number of microelements subjected to tensile strain gradually increases,and even spreads throughout the specimen;2)Under conventional triaxial compression,the cracking position of hollow cylinder specimens is concentrated in the upper and lower parts,and the final fracture mode is generally compressive shear failure.The final fracture mode of complete specimen is generally tensile fracture.Under high confining pressure,the tensile cracks of the sample are concentrated in the upper and lower parts and are not connected,while the cracks of the upper and lower parts of the intact sample will expand and connect to form a fracture surface;3)In addition,the tensile crack widths of intact and hollow cylindrical specimens under low confining pressure are larger than those under high confining pressure.展开更多
基金Projects(52205069,52075083,52304049)supported by the National Natural Science Foundation of ChinaProject(2021-BS-164)supported by the Liaoning Province Doctoral Research Startup Fund,China+2 种基金Project(LJKZ0264)supported by the Science and Technology Research Projects of Education Department of Liaoning Province,ChinaProject(G2022003010L)supported by the High-end Foreign Experts Recruitment Plan of ChinaProject(E2021203095)supported by the Natural Science Foundation for Young Scholars of Hebei Province,China。
文摘The worm wheel whose undercutting characteristic is researched is a member of offsetting normal arc-toothed cylindrical worm drive.The tooth profile of the worm in its offsetting normal section is a circular arc.The normal vector used to calculate the first-type limit function is determined in the natural frame without the aid of the curvature parameter of worm helicoid.The first-type limit line is ascertained via solving the nonlinear equations iteratively.It is discovered that one first-type limit line exists on the tooth surface of worm wheel by numerical simulation,and such a line is normally located out of the meshing zone.Only one intersection point exists between the first and second-types of limit lines,and this point is a lubrication weak point.The undercutting mechanism is essentially that a part of the meshing zone near the conjugated line of worm tooth crest will come into the undercutting area and will be cut off during machining the worm wheel.The machining simulation verifies the correctness of undercutting mechanism.Moreover,a convenient and practical characteristic quantity is proposed to judge whether the undercutting exists in the whole meshing zone via computing the first-type limit function values on the worm tooth crest.
文摘Different solvothermal reactions of ZnC2O_(4)with oxalic acid(H_(2)ox)and 1,2,4-triazole(Htrz)successfully gave a new quaternary(NJTU-Bai83,NJTU-Bai=Nanjing Tech University Bai's group)and a new quinary(NJTU-Bai84)anionic metal-organic frameworks(MOFs),where NJTU-Bai83=(Me_(2)NH_(2))2[Zn_(3)(trz)_(2)(ox)_(3)]·2H_(2)O and NJTU-Bai84=(Me_(2)NH_(2))[Zn_(3)(trz)_(3)(ox)_(2)]·H_(2)O,respectively.With the[Zn_(2)(ox)4(trz)_(2)]secondary building unit(SBU)in NJTU-Bai83 replaced by the[Zn_(3)(ox)_(2)(trz)_(6)]and planar[Zn(ox)_(2)(trz)_(2)]ones in NJTU-Bai84,2D supramolecular building layers(SBLs)are changed from the A-layer and B-layer to another A-layer,while pillars are transformed from the tetrahedral[Zn(ox)_(2)(trz)_(2)]SBU to the irregular tetrahedral[Zn(ox)_(2)(trz)_(2)]and planar[Zn(ox)_(2)(trz)_(2)]SBUs.Thus,cdq-topological quaternary NJTU-Bai83 is tuned to(4,4,8)-c new topological quinary NJTU-Bai84.Two MOFs were well characterized by powder X-ray diffraction,thermogravimetric analysis,elemental analysis,etc.CCDC:2351819,NJTU-Bai83;2351820,NJTU-Bai84.
基金Projects(52074116,51804113)supported by the National Natural Science Foundation of China。
文摘In order to study and analyze the stability of engineering rock mass under non-uniform triaxial stress and obtain the evolution mechanism of the whole process of fracture,a series of conventional triaxial compression tests and three-dimensional numerical simulation tests were carried out on hollow granite specimens with different diameters.The bearing capacity of hollow cylindrical specimen is analyzed based on elasticity.The results show that:1)Under low confining pressure,the tensile strain near the hole of the hollow cylindrical specimen is obvious,and the specimen deformation near the hole is significant.At the initial stage of loading,the compressive stress and compressive strain of the specimen are widely distributed.With the progress of loading,the number of microelements subjected to tensile strain gradually increases,and even spreads throughout the specimen;2)Under conventional triaxial compression,the cracking position of hollow cylinder specimens is concentrated in the upper and lower parts,and the final fracture mode is generally compressive shear failure.The final fracture mode of complete specimen is generally tensile fracture.Under high confining pressure,the tensile cracks of the sample are concentrated in the upper and lower parts and are not connected,while the cracks of the upper and lower parts of the intact sample will expand and connect to form a fracture surface;3)In addition,the tensile crack widths of intact and hollow cylindrical specimens under low confining pressure are larger than those under high confining pressure.