密度峰值聚类算法在处理分类型数据时难以产生较好的聚类效果。针对该现象,详细分析了其产生的原因:距离计算的重叠问题和密度计算的聚集问题。同时为了解决上述问题,提出了一种面向分类型数据的密度峰值聚类算法(Cauchy kernel-based d...密度峰值聚类算法在处理分类型数据时难以产生较好的聚类效果。针对该现象,详细分析了其产生的原因:距离计算的重叠问题和密度计算的聚集问题。同时为了解决上述问题,提出了一种面向分类型数据的密度峰值聚类算法(Cauchy kernel-based density peaks clustering for categorical data,CDPCD)。算法首先指出分类型数据距离度量过程中有序特性(分类型数据属性值之间的顺序关系)鲜有考虑的现状,进而提出一种基于概率分布的加权有序距离度量来缓解重叠问题。通过结合柯西核函数,在共享最近邻密度峰值聚类算法基础上重新评估数据密度值,改进了密度计算和二次分配方式,增强了密度多样性,降低了聚集问题带来的影响。多个真实数据集上的实验结果表明,相较于传统的基于划分和密度的聚类算法,CDPCD都取得了更好的聚类结果。展开更多
针对滩涂履带车在受潮汐影响的滩涂环境中进行长时间勘测作业的需求,提出柯西贝塞尔快速搜索随机树星(Cauchy Bessel Rapidly-exploring Random Tree Star,CB-RRT^(*))算法进行路径规划。为规划出安全路径,基于全局地图和潮汐数据,并通...针对滩涂履带车在受潮汐影响的滩涂环境中进行长时间勘测作业的需求,提出柯西贝塞尔快速搜索随机树星(Cauchy Bessel Rapidly-exploring Random Tree Star,CB-RRT^(*))算法进行路径规划。为规划出安全路径,基于全局地图和潮汐数据,并通过滩涂履带车到分界区的距离构建出滩涂预测模型;为提高滩涂履带车移动到目标点需进行多次路径规划的速度,对初始路径的关键树节点使用柯西概率密度函数进行采样缩小采样范围来提高节点的利用率,进而提高算法的收敛性;在重选父节点过程中考虑最大转角约束设定相应系数,并使用连续二次贝塞尔曲线进行拼接的方式来生成路径,达到提高路径平滑度的目的和解决平滑后路径与原路径偏差过大造成的安全性问题。仿真实验结果表明,CB-RRT^(*)算法在静态滩涂环境和动态滩涂环境中,能大大提高算法的收敛性和路径的平滑性,且保证路径长度最优,研究内容可以保证滩涂履带车在各种滩涂环境中进行长时间安全作业。展开更多
文摘密度峰值聚类算法在处理分类型数据时难以产生较好的聚类效果。针对该现象,详细分析了其产生的原因:距离计算的重叠问题和密度计算的聚集问题。同时为了解决上述问题,提出了一种面向分类型数据的密度峰值聚类算法(Cauchy kernel-based density peaks clustering for categorical data,CDPCD)。算法首先指出分类型数据距离度量过程中有序特性(分类型数据属性值之间的顺序关系)鲜有考虑的现状,进而提出一种基于概率分布的加权有序距离度量来缓解重叠问题。通过结合柯西核函数,在共享最近邻密度峰值聚类算法基础上重新评估数据密度值,改进了密度计算和二次分配方式,增强了密度多样性,降低了聚集问题带来的影响。多个真实数据集上的实验结果表明,相较于传统的基于划分和密度的聚类算法,CDPCD都取得了更好的聚类结果。
文摘针对滩涂履带车在受潮汐影响的滩涂环境中进行长时间勘测作业的需求,提出柯西贝塞尔快速搜索随机树星(Cauchy Bessel Rapidly-exploring Random Tree Star,CB-RRT^(*))算法进行路径规划。为规划出安全路径,基于全局地图和潮汐数据,并通过滩涂履带车到分界区的距离构建出滩涂预测模型;为提高滩涂履带车移动到目标点需进行多次路径规划的速度,对初始路径的关键树节点使用柯西概率密度函数进行采样缩小采样范围来提高节点的利用率,进而提高算法的收敛性;在重选父节点过程中考虑最大转角约束设定相应系数,并使用连续二次贝塞尔曲线进行拼接的方式来生成路径,达到提高路径平滑度的目的和解决平滑后路径与原路径偏差过大造成的安全性问题。仿真实验结果表明,CB-RRT^(*)算法在静态滩涂环境和动态滩涂环境中,能大大提高算法的收敛性和路径的平滑性,且保证路径长度最优,研究内容可以保证滩涂履带车在各种滩涂环境中进行长时间安全作业。