用柠檬酸溶胶-凝胶燃烧法制备了锂离子电池正极材料L iN i0.5Co0.5O2,并对材料进行了热分析、红外分析及X射线衍射分析。研究结果表明,L iN i0.5Co0.5O2干凝胶在空气中自蔓延燃烧,燃烧产物再于800℃烧结10 h,可避免因缺氧而导致杂相L i2...用柠檬酸溶胶-凝胶燃烧法制备了锂离子电池正极材料L iN i0.5Co0.5O2,并对材料进行了热分析、红外分析及X射线衍射分析。研究结果表明,L iN i0.5Co0.5O2干凝胶在空气中自蔓延燃烧,燃烧产物再于800℃烧结10 h,可避免因缺氧而导致杂相L i2CO3、L i2N i8O10的产生,产物晶型完整。展开更多
LiCoO2 precursors of the cathode material for lithium ion batteries were prepared from lithium hydroxide, basic cobalt carbonate and citric acid by a sol gel method. The LiCoO2 samples were obtained by sintering the g...LiCoO2 precursors of the cathode material for lithium ion batteries were prepared from lithium hydroxide, basic cobalt carbonate and citric acid by a sol gel method. The LiCoO2 samples were obtained by sintering the gel precursors at different temperatures and for different times. The thermal decomposition behavior of the gel precursors was examined by means of thermo gravimetric analysis and differential thermal analysis using a PCT IA thermal analyzer system. Their structures and morphologies were characterized by powder XRD and SEM techniques. It was found that using citric acid realized that the formation of LiCoO2 crystal can be clearly differentiated to the nucleation and growth processes of the crystals; furthermore, the crystal size can be controlled. Electrochemical tests using the LAND BT1 10 test system showed the electrochemical performance of the material is affected by its integrity and stability.展开更多
文摘用柠檬酸溶胶-凝胶燃烧法制备了锂离子电池正极材料L iN i0.5Co0.5O2,并对材料进行了热分析、红外分析及X射线衍射分析。研究结果表明,L iN i0.5Co0.5O2干凝胶在空气中自蔓延燃烧,燃烧产物再于800℃烧结10 h,可避免因缺氧而导致杂相L i2CO3、L i2N i8O10的产生,产物晶型完整。
文摘LiCoO2 precursors of the cathode material for lithium ion batteries were prepared from lithium hydroxide, basic cobalt carbonate and citric acid by a sol gel method. The LiCoO2 samples were obtained by sintering the gel precursors at different temperatures and for different times. The thermal decomposition behavior of the gel precursors was examined by means of thermo gravimetric analysis and differential thermal analysis using a PCT IA thermal analyzer system. Their structures and morphologies were characterized by powder XRD and SEM techniques. It was found that using citric acid realized that the formation of LiCoO2 crystal can be clearly differentiated to the nucleation and growth processes of the crystals; furthermore, the crystal size can be controlled. Electrochemical tests using the LAND BT1 10 test system showed the electrochemical performance of the material is affected by its integrity and stability.