期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于柔性演员-评论家算法的决策规划协同研究 被引量:3
1
作者 唐斌 刘光耀 +3 位作者 江浩斌 田宁 米伟 王春宏 《交通运输系统工程与信息》 EI CSCD 北大核心 2024年第2期105-113,187,共10页
为了解决基于常规深度强化学习(Deep Reinforcement Learning, DRL)的自动驾驶决策存在学习速度慢、安全性及合理性较差的问题,本文提出一种基于柔性演员-评论家(Soft Actor-Critic,SAC)算法的自动驾驶决策规划协同方法,并将SAC算法与... 为了解决基于常规深度强化学习(Deep Reinforcement Learning, DRL)的自动驾驶决策存在学习速度慢、安全性及合理性较差的问题,本文提出一种基于柔性演员-评论家(Soft Actor-Critic,SAC)算法的自动驾驶决策规划协同方法,并将SAC算法与基于规则的决策规划方法相结合设计自动驾驶决策规划协同智能体。结合自注意力机制(Self Attention Mechanism, SAM)和门控循环单元(Gate Recurrent Unit, GRU)构建预处理网络;根据规划模块的具体实现方式设计动作空间;运用信息反馈思想设计奖励函数,给智能体添加车辆行驶条件约束,并将轨迹信息传递给决策模块,实现决策规划的信息协同。在CARLA自动驾驶仿真平台中搭建交通场景对智能体进行训练,并在不同场景中将所提出的决策规划协同方法与常规的基于SAC算法的决策规划方法进行比较,结果表明,本文所设计的自动驾驶决策规划协同智能体学习速度提高了25.10%,由其决策结果生成的平均车速更高,车速变化率更小,更接近道路期望车速,路径长度与曲率变化率更小。 展开更多
关键词 智能交通 自动驾驶 柔性演员-评论家算法 决策规划协同 深度强化学习
在线阅读 下载PDF
基于柔性演员-评论家算法的自适应巡航控制研究 被引量:6
2
作者 赵克刚 石翠铎 +2 位作者 梁志豪 李梓棋 王玉龙 《汽车技术》 CSCD 北大核心 2023年第3期26-34,共9页
针对目前自适应巡航控制技术中,深度强化学习的控制算法环境适应能力不足、模型迁移性及泛化能力较差的问题,提出一种基于最大熵原理和随机离线策略的柔性演员-评论家(SAC)控制算法。构建演员和评论家网络拟合动作值函数和动作策略函数... 针对目前自适应巡航控制技术中,深度强化学习的控制算法环境适应能力不足、模型迁移性及泛化能力较差的问题,提出一种基于最大熵原理和随机离线策略的柔性演员-评论家(SAC)控制算法。构建演员和评论家网络拟合动作值函数和动作策略函数,并使用自调节温度系数改善智能体的环境探索能力;针对奖励稀疏问题,运用奖励塑造思想设计奖励函数;此外,提出一种新的经验回放机制以提高样本利用率。将所提出的控制算法在不同场景中进行仿真及实车验证,并与深度确定性策略梯度(DDPG)算法进行比较,结果表明,该算法具有更好的模型泛化能力和实车迁移效果。 展开更多
关键词 自适应巡航控制 柔性演员-评论家 可迁移性 深度强化学习
在线阅读 下载PDF
基于多智能体柔性演员-评论家学习的服务功能链部署算法 被引量:2
3
作者 唐伦 李师锐 +1 位作者 杜雨聪 陈前斌 《电子与信息学报》 EI CSCD 北大核心 2023年第8期2893-2901,共9页
针对网络功能虚拟化(NFV)架构下业务请求动态变化引起的服务功能链(SFC)部署优化问题,该文提出一种基于多智能体柔性演员-评论家(MASAC)学习的SFC部署优化算法。首先,建立资源负载惩罚、SFC部署成本和时延成本最小化的模型,同时受限于SF... 针对网络功能虚拟化(NFV)架构下业务请求动态变化引起的服务功能链(SFC)部署优化问题,该文提出一种基于多智能体柔性演员-评论家(MASAC)学习的SFC部署优化算法。首先,建立资源负载惩罚、SFC部署成本和时延成本最小化的模型,同时受限于SFC端到端时延和网络资源预留阈值约束。其次,将随机优化问题转化为马尔可夫决策过程(MDP),实现SFC动态部署和资源的均衡调度,还进一步提出基于业务分工的多决策者编排方案。最后,在分布式多智能体系统中采用柔性演员-评论家(SAC)算法以增强探索能力,并引入了中央注意力机制和优势函数,能够动态和有选择性地关注获取更大部署回报的信息。仿真结果表明,所提算法可以实现负载惩罚、时延和部署成本的优化,并随业务请求量的增加能更好地扩展。 展开更多
关键词 网络功能虚拟化 服务功能链 柔性演员-评论家学习 多智能体强化学习
在线阅读 下载PDF
考虑进站策略的网联电动公交车节能驾驶优化研究
4
作者 南斯睿 于谦 +2 位作者 李铁柱 尚赞娣 陈海波 《交通运输系统工程与信息》 北大核心 2025年第2期82-94,共13页
针对公交车在进出站和信号交叉口高能耗的问题,本文提出一种考虑进站策略的节能驾驶优化方法。首先,基于利用城市交通能力仿真(Simulation of Urban Mobility, SUMO)平台搭建智能网联场景,构建能够反映能耗、行驶效率和安全性的强化学... 针对公交车在进出站和信号交叉口高能耗的问题,本文提出一种考虑进站策略的节能驾驶优化方法。首先,基于利用城市交通能力仿真(Simulation of Urban Mobility, SUMO)平台搭建智能网联场景,构建能够反映能耗、行驶效率和安全性的强化学习复合奖励函数;其次,将进站策略和预设交通规则作为约束集成于柔性演员-评论家(Soft Actor-Critic, SAC)深度强化学习框架中,优化车辆进出站及接近信号交叉口的轨迹;最后,以实际行驶、基于深度Q网络(Deep Q-Network, DQN)算法常规、基于SAC算法、基于规则约束和DQN算法(DQN-ruled)的优化方法作为基准方案,与本文提出的基于规则约束和SAC算法(SAC-ruled)的优化方法进行对比。结果表明:通过SAC-ruled算法优化后的驾驶轨迹在多种场景下均优于基准方案。在跟驰运动中,与基准方案相比,所设计的节能驾驶优化方法较基准方案的车辆能耗最高减少35.97%,行驶时间提升21.67%;在换道运动中,车辆能耗最多可降低41.40%,行驶时间提升16.94%。此外,通过敏感性分析验证,本文提出的基于SAC-ruled算法的节能驾驶优化方法在应对车流量波动方面表现出更强的适应性。本文建立的节能驾驶优化模型可集成节能辅助驾驶系统,鼓励驾驶员主动节能。 展开更多
关键词 智能交通 节能驾驶优化 深度强化学习 纯电动公交 柔性演员-评论家算法
在线阅读 下载PDF
基于最大熵深度强化学习的双足机器人步态控制方法 被引量:3
5
作者 李源潮 陶重犇 王琛 《计算机应用》 CSCD 北大核心 2024年第2期445-451,共7页
针对双足机器人连续直线行走的步态稳定控制问题,提出一种基于最大熵深度强化学习(DRL)的柔性演员-评论家(SAC)步态控制方法。首先,该方法无需事先建立准确的机器人动力学模型,所有参数均来自关节角而无需额外的传感器;其次,采用余弦相... 针对双足机器人连续直线行走的步态稳定控制问题,提出一种基于最大熵深度强化学习(DRL)的柔性演员-评论家(SAC)步态控制方法。首先,该方法无需事先建立准确的机器人动力学模型,所有参数均来自关节角而无需额外的传感器;其次,采用余弦相似度方法对经验样本分类,优化经验回放机制;最后,根据知识和经验设计奖励函数,使双足机器人在直线行走训练过程中不断进行姿态调整,确保直线行走的鲁棒性。在Roboschool仿真环境中与其他先进深度强化学习算法,如近端策略优化(PPO)方法和信赖域策略优化(TRPO)方法的实验对比结果表明,所提方法不仅实现了双足机器人快速稳定的直线行走,而且鲁棒性更好。 展开更多
关键词 双足机器人 步态控制 深度强化学习 最大熵 柔性演员-评论家算法
在线阅读 下载PDF
基于优先经验回放的生成式SAC算法及其应用
6
作者 张伟 李玉俊 +2 位作者 谢雯雯 许耘嘉 孙庚 《吉林大学学报(理学版)》 2025年第6期1713-1722,共10页
针对传统柔性演员-评论家算法在探索能力和复杂环境中状态表征不足的问题,提出一种改进的柔性演员-评论家算法.首先,该算法通过引入优先经验回放机制,利用时序差分误差对经验样本进行动态优先级评估,从而提高关键经验的利用率,进而提升... 针对传统柔性演员-评论家算法在探索能力和复杂环境中状态表征不足的问题,提出一种改进的柔性演员-评论家算法.首先,该算法通过引入优先经验回放机制,利用时序差分误差对经验样本进行动态优先级评估,从而提高关键经验的利用率,进而提升学习效率;其次,该算法将生成式Transformer架构集成到演员网络中以增强对状态特征的动态捕捉能力,从而显著提升其在复杂优化任务中的性能;最后,在高校后勤人员动态调度优化问题上进行应用实验.实验结果表明,与原始柔性演员-评论家算法及经典深度Q网络算法相比,改进的柔性演员-评论家算法在人力需求动态拟合方面误差更小,从而有效验证了其在实际应用中的优势和实用性. 展开更多
关键词 深度强化学习 柔性演员-评论家算法 优先经验回放 Transformer架构 后勤管理
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部