期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
重新找回人工智能的可解释性 被引量:35
1
作者 何华灿 《智能系统学报》 CSCD 北大核心 2019年第3期393-412,共20页
针对深度神经网络 AI研究的可解释性瓶颈,指出刚性逻辑(数理形式逻辑)和二值神经元等价,二值神经网络可转换成逻辑表达式,有强可解释性。深度神经网络一味增加中间层数来拟合大数据,没有适时通过抽象把最小粒度的数据(原子)变成粒度较... 针对深度神经网络 AI研究的可解释性瓶颈,指出刚性逻辑(数理形式逻辑)和二值神经元等价,二值神经网络可转换成逻辑表达式,有强可解释性。深度神经网络一味增加中间层数来拟合大数据,没有适时通过抽象把最小粒度的数据(原子)变成粒度较大的知识(分子),再把较小粒度的知识变成较大粒度的知识,把原有的强可解释性淹没在中间层次的汪洋大海中。要支持多粒度的知识处理,需把刚性逻辑扩张为柔性命题逻辑(命题级数理辩证逻辑),把二值神经元扩张为柔性神经元,才能保持强可解释性。本文详细介绍了从刚性逻辑到柔性逻辑的扩张过程和成果,最后介绍了它们在 AI研究中的应用,这是重新找回 AI研究强可解释性的最佳途径。 展开更多
关键词 人工智能 可解释性 演化 不确定性 逻辑 柔性命题逻辑 柔性神经元 数理辩证逻辑
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部