This paper cursorily introduced some ideas and approaches of ecosystem health researches. The definition and connotations of forest ecosystem health have also been expatiated. Defining forest ecosystem health has been...This paper cursorily introduced some ideas and approaches of ecosystem health researches. The definition and connotations of forest ecosystem health have also been expatiated. Defining forest ecosystem health has been discussed from the management objective approach, ecosystem approach, and integration approach. To impel the relative researches in China, more attention on the properties of a forest ecosystem should be paid.展开更多
Wind not only causes extensive damages to trees in many parts of the world, it also has more subtle effects on the growth and morphology of trees and forest ecology as well. Wind damage to trees has historically been ...Wind not only causes extensive damages to trees in many parts of the world, it also has more subtle effects on the growth and morphology of trees and forest ecology as well. Wind damage to trees has historically been the field of silviculture, but increasing recognition of the importance and complexity of the subject has recently got people involved from many other disciplines. Due to the global climate changes, it is believed that the risk of further and stronger storms is increasing. In order to better understand the effects of wind on individual trees, forest stand and forest ecosystem, and further to practice the management of forests, it is necessary to summarize the research results related to this subject. This review was mostly based on the references from recent researches in the field, especially from the symposium volumes of some international conferences on this subject. The results indicated that there have been significant progresses in the following aspects: 1) the aerodynamic interaction between wind and trees, 2) the mechanics of trees under wind loading and adaptive growth, 3) the tree's physiological responses to wind, and 4) the risk assessment of wind damage to forest. However, there are some aspects which may need further studies: 1) wind damage to natural forests, 2) wind-driven gap formation and forest dynamics, 3) the effects of changes resulted from wind disturbances on ecological processes of forest ecosystem, and 4) management for the wind-damaged forests. Key words Wind - Wind effect - Trees/forest - Forest ecology - Disturbance CLC number S718 Document code B Foundation item: This research was supported by “the 100-Young-Researcher Project” of Chinese Academy of Sciences (BR0301) and National Natural Science Foundation (30371149).Biography: ZHU Jiao-jun (1965-), male, Ph. Doctor, Professor of Institute of Applied Ecology, Chinese Academy of Sciences, Professor of Graduate School of Chinese Academy of Sciences. China. Scholar researcher of Faculty of Agriculture, Niigata University, JapanResponsible editor: Song Funan展开更多
Jilin Province is one of major forest regions of China. This paper analyzed the existing conditions and tendency in forest ecological restoration of the province and revealed the confronting problems in ecology and ec...Jilin Province is one of major forest regions of China. This paper analyzed the existing conditions and tendency in forest ecological restoration of the province and revealed the confronting problems in ecology and economy. The authors divided Jilin Province into three ecological economic zones, including nid-west farming and stockbreeding area, east hilly diversified-operation area, and Changbai Mountain national forest area, and discussed the direction and tasks of forest ecological restoration of each zone. Some Countermeasures and suggestions were put forward for restoration of forest ecology of the province.展开更多
Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.), a fast-growing, ever-green conifer tree with high yield and excellent quality, is the most important tree species of timber plantations in subtropical China. We inv...Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.), a fast-growing, ever-green conifer tree with high yield and excellent quality, is the most important tree species of timber plantations in subtropical China. We investigated the characteristics of biomass, litterfall and nutrient fluxes in the 8, 14 and 24 year-old stands, representing the young, middle-aged and mature stands. The results showed that Chinese fir plantations in central Fujian province had high productivity, and the proportion of stem mass in total biomass was between 50%-70%. Chinese fir was low nutrient-return tree species with litterfall. Nutrient withdrawal from senescing needles was a strong age-dependence for nitrogen, phosphorous and potassium in Chinese fir. With a management system of such short-rotation and continuously pure-crop planting, harvesting timber can lead to great nutrient loss, which may be one of the causes for site degradation.展开更多
Accurately estimating forest net primary productivity (NPP) plays an important role in study of global carbon budget. A NPP model reflecting the synthetic effects of both biotic (forest stand age, A and stem volume, V...Accurately estimating forest net primary productivity (NPP) plays an important role in study of global carbon budget. A NPP model reflecting the synthetic effects of both biotic (forest stand age, A and stem volume, V) and climatic factors (mean annual actual evapotranspiration, E) was developed for Chinese pine (Pinus tabulaeformis) forest by making full use of Forest Inventory Data (FID) and dynamically assessing forest productivity. The NPP of Chinese pine forest was estimated by using this model and the fourth FID (1989–1993), and the spatial pattern of NPP of Chinese pine forest was given by Geography Information System (GIS) software. The results indicated that mean NPP value, of Chinese pine forest was 7.82 t m?2·a?1 and varied at the range of 3.32–11.87 t hm?2·a?1. NPP distribution of Chinese pine forests was significantly different in different regions, higher in the south and lower in the north of China. In terms of the main distribution regions of Chinese pine, the NPPs of Chinese pine forest in Shanxi and Shaanxi provinces were in middle level, with an average NPP of 7.4 t hm?2·a?1, that in the southern and the eastern parts (e.g. Shichuang Hunan, Henan, and Liaoning provinces) was higher (over 7.7 t hm?2·a?1), and that in the northern part and western part (e.g. Neimenggu and Ningxia provinces) was lower (below 5 t hm?2·a?1). This study provides an efficient way for using FID to understand the dynamics of foest NPP and evaluate its effects on global climate change. Keywords Forest NPP - Forest inventory data - Chinese pine forest - Climatic and biotic NPP model - Spatial distribution pattern CLC number S727.22 - S757.2 Document code A Foundation item: This study was supported by the National Natural Science Foundation of China (Nos. 30028001, 49905005), National Key Basic Research Specific Foundation (G1999043407); the Chinese Academy of Sciences (KSC2-1-07).Biography: ZHAO Min (1973-), female, Ph. D. in Laboratory of Quantitative Vegetation Ecology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, P. R. China.Responsible editor: Zhu Hong展开更多
As the most important type or component in the terrestrial ecosystems, forest ecosystem makes its role obviously prominent and important on environment and human being. It possesses non-substitutable functions in the ...As the most important type or component in the terrestrial ecosystems, forest ecosystem makes its role obviously prominent and important on environment and human being. It possesses non-substitutable functions in the process of sustainable development. However, due to the complexity of the forest ecosystem and the relatively delay or lack of the related research technology, the science is still in the case of immature and questions. This paper summarized and reviewed briefly the development and the present case of the forest ecology, then pointed out the existing problems in the forest ecosystem researches. In the end, we discussed several fields that need to pay more attention to in future researches.展开更多
The vertical variation and storage of nitrogen in the depth of 0-150 cm of an aquic brown soil were studied under 14 years of four land use patterns, i.e., paddy field, maize field, fallow field and woodland in Shenya...The vertical variation and storage of nitrogen in the depth of 0-150 cm of an aquic brown soil were studied under 14 years of four land use patterns, i.e., paddy field, maize field, fallow field and woodland in Shenyang Experimental Station of Ecology, Chinese Academy of Sciences in November of 2003. The results showed that different land uses had different profile distributions of soil total nitrogen (STN), alkali N, ammonium (NH4+-N) and nitrate (NO3--N). The sequence of STN storage was woodland >maize field > fallow field > paddy field, while that of NO3--N content was maize field > paddy field > woodland > fallow field, suggesting the different root biomass and biological N cycling under various land uses. The STN storage in the depth of 0-100 cm of woodland averaged to 11.41 thm-1, being 1.65 and 1.25 times as much as that in paddy and maize fields, respec-tively, while there was no significant difference between maize and fallow fields. The comparatively higher amount of NO3--N in maize and paddy fields may be due to nitrogen fertilization and anthropogenic disturbance. Soil alkali N was significantly related with STN, and the correlation could be expressed by a linear regression model under each land use (R20.929, p<0.001). Such a correlation was slightly closer in nature (woodland and fallow field) than in agro ecosystems (paddy and maize fields). Heavy N fertilization induced an excess of crop need, and led to a comparatively higher amount of soil NO3--N in cultivated fields than in fallow field and woodland. It is suggested that agroforestry practices have the potential to make a significant contribution to both crop production and environment protection.展开更多
Nitrogen is one of the most important elements that can limit plant growth in forest ecosystems. Studies of nitrogen mineralization, nitrogen saturation and nitrogen cycle in forest ecosystems is very necessary for un...Nitrogen is one of the most important elements that can limit plant growth in forest ecosystems. Studies of nitrogen mineralization, nitrogen saturation and nitrogen cycle in forest ecosystems is very necessary for understanding the productivity of stand, nutrient cycle and turnover of nitrogen of forest ecosystems. Based on comparison and analysis of domestic and in-ternational academic references related to studies on nitrogen mineralization, nitrogen saturation and nitrogen cycle in recent 10 years, the current situation and development of the study on these aspects, and the problems existed in current researches were reviewed. At last, some advices were given for future researches.展开更多
Mongolian pine (Pinus sylvestiris Linnaeus var. mongolica Litvinov) as a valuable conifer tree species has been broadly introduced to the sandy land areas in 揟hree North?regions (North, northwest and northeast of Chi...Mongolian pine (Pinus sylvestiris Linnaeus var. mongolica Litvinov) as a valuable conifer tree species has been broadly introduced to the sandy land areas in 揟hree North?regions (North, northwest and northeast of China), but many problems occurred in the earliest Mongolian pine plantations in Zhanggutai, Zhangwu County, Liaoning Province (ZZL). In order to clarify the reason, comprehensive investigations were carried out on differences in structure characteristics, growth processes and ecological factors between artificial stands (the first plantation established in ZZL in 1950s) and natural stands (the origin forests of the tree species in Honghuaerji, Inner Mongolia) on sandy land. The results showed that variation of diameter-class distributions in artificial stands and natural stands could be described by Weibull and Normal distribution models, respectively. Chapman-Richards growth model was employed to reconstruct the growth process of Mongolian pine based on the data from field investigation and stem analysis. The ages of maximum of relative growth rate and average growth rate of DBH, height, and volume of planted trees were 11, 22 years, 8, 15 years and 35, 59 years earlier than those of natural stand trees, respectively. In respect of the incremental acceleration of volume, the artificial and natural stands reached their maximum values at 14 years and 33 years respectively. The quantitative maturity ages of artificial stands and natural stands were 43 years and 102 years respectively. It was concluded that the life span of the Mongolian pine trees in natural stands was about 60 years longer than those in artificial stands. The differences mentioned above between artificial and natural Mongolian pine forests on sandy land were partially attributed to the drastic variations of ecological conditions such as latitude, temperature, precipitation, evaporation and height above sea level. Human beings' disturbances and higher density in plantation forest may be ascribed as additional reasons. Those results may be potentially useful for the management and afforestation of Mongolian pine plantations on sandy land in arid and semi-arid areas.展开更多
The exotic Sonneratia apetala in Leizhou Peninsula, has shown outstanding fast-growing ability in restored mangrove forests, at the middle and high tide intertidal zone, with year-round fresh water input from drainage...The exotic Sonneratia apetala in Leizhou Peninsula, has shown outstanding fast-growing ability in restored mangrove forests, at the middle and high tide intertidal zone, with year-round fresh water input from drainage. By setting plot and selecting standard tree, investigation and measurement on height growth, diameter growth, biomass, productivity, and so on, were made in a S. apetala plantation at age of six at Lanbei, Fucheng, Leizhou Peninsula in May 2001. The investigating results showed that the mean annual height growth of plantation was 2.03 m and mean annual growth of diameter at breast height (DBH) was 2.35 cm. There exists a significant correlation between the diameter at ground surface (DGS) and DBH. The average biomass of a single standard tree in dry weight was 95.647 kg/m2. A ratio of above-ground biomass to under-ground biomass was 1.60. The stand biomass of unit area was 22.955 kg/m2, singletree wood volume was 88.23 dm3, and the annual wood volume productivity (PA) of the same year was 0.407. The forest energy accumulation was 424.851 MJ/m2, with annual solar energy fixing rate of 40.68 ×10-7%. It is concluded that S. apetala species had characteristics of outstanding high biomass accumulation and could be used as coastal planting tree species in southern China.展开更多
The stand growth and yield dynamic models for Larch in Jilin Province were developed based on the forest growth theories with the forest continuous inventory data. The results indicated that the developed models had h...The stand growth and yield dynamic models for Larch in Jilin Province were developed based on the forest growth theories with the forest continuous inventory data. The results indicated that the developed models had high precision, and they could be used for the updating data of inventory of planning and designing and optimal decision of forest management.展开更多
This paper makes a brief introduction of the ecological environment, forestry achievements, and the existing questions of Jilin Province. The task of forest ecological network and eight questions demanding prompt solu...This paper makes a brief introduction of the ecological environment, forestry achievements, and the existing questions of Jilin Province. The task of forest ecological network and eight questions demanding prompt solution were discussed based on the present situation of forestry in Jilin Province. The author also made prospects for future application of bio-technique, infor-mation technology, new material technology and nuisance-free forest health technology in forest ecological network.展开更多
Structure, species composition, and soil properties of a subtropical evergreen broad-leaved forest in Okinawa, Japan, were examined by establishment of plots at thirty sites. The forest was characterized by a relative...Structure, species composition, and soil properties of a subtropical evergreen broad-leaved forest in Okinawa, Japan, were examined by establishment of plots at thirty sites. The forest was characterized by a relatively low canopy and a large number of small-diameter trees. Mean canopy height for this forest was 10 m and stands contained an average of 5400 stems-ha^-1 ( -〉 3.0 cm DBH); 64% of those stems were smaller than 10 cm DBH. The total basal area was 54.4 m^2-ha^-1, of which Castanopsis sieboldii contributed 48%. The forest showed high species diversity of trees. 80 tree species (≥ 3.0 cm DBH) from 31 families was identified in the thirty sampling plots. C. sieboldii and Schima wallichii were the dominant and subdominant species in terms of importance value. The mean tree species diversity indices for the plots were, 3.36 for Diversity index (H'), 0.71 for Equitability index (J') and 4.72 for Species richness index (S'), all of which strongly declined with the increase of importance value of the dominant, C. sieboldii. Measures of soil nutrients indicated low fertility, extreme heterogeneity and possible A1 toxicity. Regression analysis showed that stem density and the dominant tree height were significantly correlated with soil pH. There was a significant positive relationship between species diversity index and soil exchangeable K^+, Ca^2+, and Ca^2+/Al^3- ratio (all p values 〈0.001) and a negative relationship with N, C and P. The results suggest that soil property is a major factor influencing forest composition and structure within the subtropical forest in Okinawa.展开更多
Aboveground vertical profiles of N2O concentrations were measured with in two natural coniferous-deciduous mixed forests of 1998 and 1999 in Changbai M ountain. Significant high N2O concentrations were found in six pr...Aboveground vertical profiles of N2O concentrations were measured with in two natural coniferous-deciduous mixed forests of 1998 and 1999 in Changbai M ountain. Significant high N2O concentrations were found in six profiles out of t welve profiles. The results showed that high concentrations were 3.03% to 64.9% higher than the "normal concentrations" in these six profiles. Differences betwe en the high concentrations and the "normal concentrations" were statistically si gnificant. The simultaneous occurrence of high concentrations at/nearby the cano py height and normal concentrations at the trunk space height indicated an efflu x of N2O from foliage to atmosphere. This study afforded evidence supporting tha t plant per se, besides forest soil, was an important source of atmospheric N2O in a forest ecosystem.展开更多
Based on theories of protective forests and landscape ecology, the reasonableness of structures and patterns of shelterbelt system at Beizang Town, Daxing County, Beijing were analyzed and assessed from the two scales...Based on theories of protective forests and landscape ecology, the reasonableness of structures and patterns of shelterbelt system at Beizang Town, Daxing County, Beijing were analyzed and assessed from the two scales of forest belts and networks, by integrating uses of field investigation, GIS and RS techniques. Results showed that the existent main belt (3-12 m in width) was too narrow, while the assistant belt (3-27.1 m in width) was too wide; the species composition of the existent shelterbelts was single, and the structures and patterns of the shelterbelt system were unreasonable. It is suggested that the structure of the main and the assistant belts should be changed, such as increasing the width of main belts, decreasing the width of assistant belt, and planting more mixed species, and the pattern with arbores in the middle and shrubs in the sides of belts could be taken into account. For the landscape structure of forest network after regenerating or reconstruction, the grid number of closed network should be 13 per km2 and the minimum number of belts should be 34 per km2. This study also testified that integrating GIS and remote technique with landscape ecology could provide an effective method for reasonable reconstruction of the structures and patterns of shelterbelts system.展开更多
Mangrove endophytic fungus 1893 was isolated from Kandelia candel from an estuarine mangrove on the South China Sea Coast Two new lactones 1893A and 1893B, together with other known compounds, have been isolated from ...Mangrove endophytic fungus 1893 was isolated from Kandelia candel from an estuarine mangrove on the South China Sea Coast Two new lactones 1893A and 1893B, together with other known compounds, have been isolated from its fermentation broth. To classify the endophyte correctly for further industrial application, a combination of morphological and molecular techniques was used to approach its identity. The endophyte was compared with similar species having trichogynes or trichogyne-like hyphae which apparently fused with an- theridium-like hyphae, and perithecia initials developing from an ascogonial coil surrounded by enveloping hyphae in early developmental stages on pure culture. Further morphological characteristics on host and non-host were used for comparison with similar species when the endophyte was cultivated on leaves ofKandelia candel and Mangifera indica, respectively, which resulted in classifying the endophyte as a Phomopsis specics. The ITS sequence of rDNA was used to infer its phylogenetic relationships with Phomopsis species that resembled the strain in morphology or ecology. Finally, the endophyte was identified as Diaporthe phaseolorum var. sojae based on morphological and molecular evidence. Our study is a first report ofDiaporthephaseolorum var. sojae isolated from mangrove Kandelia candel.展开更多
A new model was developed to predict forestland demand of China during the years of 2010-2050 in terms of the concept of forest ecosystem services. On the basis of the relationship between forest ecosystem services an...A new model was developed to predict forestland demand of China during the years of 2010-2050 in terms of the concept of forest ecosystem services. On the basis of the relationship between forest ecosystem services and classified forest management, we hypothesized that the ecological-forest provides ecological services, whereas commercial-forest supplies wood and timber production, and the influences of the growth of population, social-economic development target, forest management methods and the technology changes on forest resources were also taken into account. The prediction reveals that the demand of total forestland of China will be 244.8, 261.2 and 362.2 million ha by the year 2010, 2020 and 2050, respectively. The results demonstrated that China will be confronted with a shortage of forest resources, especially with lack of ecological-oriented forests, in the future. It is suggested that sustainable management of forest resources must be reinforced and more attention should be drown no enhancing the service function of forest ecosystem.展开更多
Soil water stress was studied on the potted seedlings of five dominant tree species (Pinus koraienes Sieb.et Zucc., Fraxinus mandshurica Rupr., Juglans mandshurica Maxim, Tilia amurensis Rupr. and Quercus mongolica Fi...Soil water stress was studied on the potted seedlings of five dominant tree species (Pinus koraienes Sieb.et Zucc., Fraxinus mandshurica Rupr., Juglans mandshurica Maxim, Tilia amurensis Rupr. and Quercus mongolica Fisch.ex Turcz) from the broadleaved/Korean pine forest in Changbai Mountain. Leaf growth, water transpiration and photosynthesis were compared for each species under three soil moisture conditions: 85%-100% (high water, CK), 65%-85% (Medium water, MW) and 45%-65% (low water, LW) of 37.4% water-holding capacity in field. The results showed that the characteristic of typical drought-resistance of the leaves is significantly developed. The net photosynthetic rate and water use efficiency of Fraxinus mandshurica were higher in MW than those in CK. But for the other four species, the net photosynthetic rate and water use efficiency in CK were lower than those in MW and LW. The transpiration rate responding to soil moistures varied from species to species.展开更多
基金This study was supported by the National Natural Science Foundation of China (30170744) Chinese Academy of Sciences (A grant KZCX2-406) and Changbai Mountain Open Research Station.
文摘This paper cursorily introduced some ideas and approaches of ecosystem health researches. The definition and connotations of forest ecosystem health have also been expatiated. Defining forest ecosystem health has been discussed from the management objective approach, ecosystem approach, and integration approach. To impel the relative researches in China, more attention on the properties of a forest ecosystem should be paid.
基金This research was supported by the 100-Young-Researcher Project of Chinese Academy of Sciences (BR0301) and National Natural Science Foundation (30371149).
文摘Wind not only causes extensive damages to trees in many parts of the world, it also has more subtle effects on the growth and morphology of trees and forest ecology as well. Wind damage to trees has historically been the field of silviculture, but increasing recognition of the importance and complexity of the subject has recently got people involved from many other disciplines. Due to the global climate changes, it is believed that the risk of further and stronger storms is increasing. In order to better understand the effects of wind on individual trees, forest stand and forest ecosystem, and further to practice the management of forests, it is necessary to summarize the research results related to this subject. This review was mostly based on the references from recent researches in the field, especially from the symposium volumes of some international conferences on this subject. The results indicated that there have been significant progresses in the following aspects: 1) the aerodynamic interaction between wind and trees, 2) the mechanics of trees under wind loading and adaptive growth, 3) the tree's physiological responses to wind, and 4) the risk assessment of wind damage to forest. However, there are some aspects which may need further studies: 1) wind damage to natural forests, 2) wind-driven gap formation and forest dynamics, 3) the effects of changes resulted from wind disturbances on ecological processes of forest ecosystem, and 4) management for the wind-damaged forests. Key words Wind - Wind effect - Trees/forest - Forest ecology - Disturbance CLC number S718 Document code B Foundation item: This research was supported by “the 100-Young-Researcher Project” of Chinese Academy of Sciences (BR0301) and National Natural Science Foundation (30371149).Biography: ZHU Jiao-jun (1965-), male, Ph. Doctor, Professor of Institute of Applied Ecology, Chinese Academy of Sciences, Professor of Graduate School of Chinese Academy of Sciences. China. Scholar researcher of Faculty of Agriculture, Niigata University, JapanResponsible editor: Song Funan
基金part of "Investigation and evaluation on present condition of ecological environment and study on overall-planning of ecological
文摘Jilin Province is one of major forest regions of China. This paper analyzed the existing conditions and tendency in forest ecological restoration of the province and revealed the confronting problems in ecology and economy. The authors divided Jilin Province into three ecological economic zones, including nid-west farming and stockbreeding area, east hilly diversified-operation area, and Changbai Mountain national forest area, and discussed the direction and tasks of forest ecological restoration of each zone. Some Countermeasures and suggestions were put forward for restoration of forest ecology of the province.
基金This research was sponsored by National Natural Science Foundation of China (Grant No. 39630240 and 3000132).
文摘Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.), a fast-growing, ever-green conifer tree with high yield and excellent quality, is the most important tree species of timber plantations in subtropical China. We investigated the characteristics of biomass, litterfall and nutrient fluxes in the 8, 14 and 24 year-old stands, representing the young, middle-aged and mature stands. The results showed that Chinese fir plantations in central Fujian province had high productivity, and the proportion of stem mass in total biomass was between 50%-70%. Chinese fir was low nutrient-return tree species with litterfall. Nutrient withdrawal from senescing needles was a strong age-dependence for nitrogen, phosphorous and potassium in Chinese fir. With a management system of such short-rotation and continuously pure-crop planting, harvesting timber can lead to great nutrient loss, which may be one of the causes for site degradation.
基金This study was supported by the National Natural Science Foundation of China (Nos. 30028001 49905005)+1 种基金 National Key Basic Re-search Specific Foundation (G1999043407) the Chinese Acade
文摘Accurately estimating forest net primary productivity (NPP) plays an important role in study of global carbon budget. A NPP model reflecting the synthetic effects of both biotic (forest stand age, A and stem volume, V) and climatic factors (mean annual actual evapotranspiration, E) was developed for Chinese pine (Pinus tabulaeformis) forest by making full use of Forest Inventory Data (FID) and dynamically assessing forest productivity. The NPP of Chinese pine forest was estimated by using this model and the fourth FID (1989–1993), and the spatial pattern of NPP of Chinese pine forest was given by Geography Information System (GIS) software. The results indicated that mean NPP value, of Chinese pine forest was 7.82 t m?2·a?1 and varied at the range of 3.32–11.87 t hm?2·a?1. NPP distribution of Chinese pine forests was significantly different in different regions, higher in the south and lower in the north of China. In terms of the main distribution regions of Chinese pine, the NPPs of Chinese pine forest in Shanxi and Shaanxi provinces were in middle level, with an average NPP of 7.4 t hm?2·a?1, that in the southern and the eastern parts (e.g. Shichuang Hunan, Henan, and Liaoning provinces) was higher (over 7.7 t hm?2·a?1), and that in the northern part and western part (e.g. Neimenggu and Ningxia provinces) was lower (below 5 t hm?2·a?1). This study provides an efficient way for using FID to understand the dynamics of foest NPP and evaluate its effects on global climate change. Keywords Forest NPP - Forest inventory data - Chinese pine forest - Climatic and biotic NPP model - Spatial distribution pattern CLC number S727.22 - S757.2 Document code A Foundation item: This study was supported by the National Natural Science Foundation of China (Nos. 30028001, 49905005), National Key Basic Research Specific Foundation (G1999043407); the Chinese Academy of Sciences (KSC2-1-07).Biography: ZHAO Min (1973-), female, Ph. D. in Laboratory of Quantitative Vegetation Ecology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, P. R. China.Responsible editor: Zhu Hong
基金This study was supported by the National Natural Science Foundation of China (NSFC39970123 30170744)+1 种基金 Chinese Academy of Sciences (A grant KZCX2-406) and Changbai Mountain Open Research Station.
文摘As the most important type or component in the terrestrial ecosystems, forest ecosystem makes its role obviously prominent and important on environment and human being. It possesses non-substitutable functions in the process of sustainable development. However, due to the complexity of the forest ecosystem and the relatively delay or lack of the related research technology, the science is still in the case of immature and questions. This paper summarized and reviewed briefly the development and the present case of the forest ecology, then pointed out the existing problems in the forest ecosystem researches. In the end, we discussed several fields that need to pay more attention to in future researches.
文摘The vertical variation and storage of nitrogen in the depth of 0-150 cm of an aquic brown soil were studied under 14 years of four land use patterns, i.e., paddy field, maize field, fallow field and woodland in Shenyang Experimental Station of Ecology, Chinese Academy of Sciences in November of 2003. The results showed that different land uses had different profile distributions of soil total nitrogen (STN), alkali N, ammonium (NH4+-N) and nitrate (NO3--N). The sequence of STN storage was woodland >maize field > fallow field > paddy field, while that of NO3--N content was maize field > paddy field > woodland > fallow field, suggesting the different root biomass and biological N cycling under various land uses. The STN storage in the depth of 0-100 cm of woodland averaged to 11.41 thm-1, being 1.65 and 1.25 times as much as that in paddy and maize fields, respec-tively, while there was no significant difference between maize and fallow fields. The comparatively higher amount of NO3--N in maize and paddy fields may be due to nitrogen fertilization and anthropogenic disturbance. Soil alkali N was significantly related with STN, and the correlation could be expressed by a linear regression model under each land use (R20.929, p<0.001). Such a correlation was slightly closer in nature (woodland and fallow field) than in agro ecosystems (paddy and maize fields). Heavy N fertilization induced an excess of crop need, and led to a comparatively higher amount of soil NO3--N in cultivated fields than in fallow field and woodland. It is suggested that agroforestry practices have the potential to make a significant contribution to both crop production and environment protection.
基金Forest Ecosystem Research of Liangshui & Maorshan Station of Heilongjiang Province (CFERN, No. 2001-02).
文摘Nitrogen is one of the most important elements that can limit plant growth in forest ecosystems. Studies of nitrogen mineralization, nitrogen saturation and nitrogen cycle in forest ecosystems is very necessary for understanding the productivity of stand, nutrient cycle and turnover of nitrogen of forest ecosystems. Based on comparison and analysis of domestic and in-ternational academic references related to studies on nitrogen mineralization, nitrogen saturation and nitrogen cycle in recent 10 years, the current situation and development of the study on these aspects, and the problems existed in current researches were reviewed. At last, some advices were given for future researches.
基金The research was supported by innovation research project of Chinese Academy of Sciences (KZCX3-SW-418) and by Nature Science Foundation of Liaoning Province (20021006).
文摘Mongolian pine (Pinus sylvestiris Linnaeus var. mongolica Litvinov) as a valuable conifer tree species has been broadly introduced to the sandy land areas in 揟hree North?regions (North, northwest and northeast of China), but many problems occurred in the earliest Mongolian pine plantations in Zhanggutai, Zhangwu County, Liaoning Province (ZZL). In order to clarify the reason, comprehensive investigations were carried out on differences in structure characteristics, growth processes and ecological factors between artificial stands (the first plantation established in ZZL in 1950s) and natural stands (the origin forests of the tree species in Honghuaerji, Inner Mongolia) on sandy land. The results showed that variation of diameter-class distributions in artificial stands and natural stands could be described by Weibull and Normal distribution models, respectively. Chapman-Richards growth model was employed to reconstruct the growth process of Mongolian pine based on the data from field investigation and stem analysis. The ages of maximum of relative growth rate and average growth rate of DBH, height, and volume of planted trees were 11, 22 years, 8, 15 years and 35, 59 years earlier than those of natural stand trees, respectively. In respect of the incremental acceleration of volume, the artificial and natural stands reached their maximum values at 14 years and 33 years respectively. The quantitative maturity ages of artificial stands and natural stands were 43 years and 102 years respectively. It was concluded that the life span of the Mongolian pine trees in natural stands was about 60 years longer than those in artificial stands. The differences mentioned above between artificial and natural Mongolian pine forests on sandy land were partially attributed to the drastic variations of ecological conditions such as latitude, temperature, precipitation, evaporation and height above sea level. Human beings' disturbances and higher density in plantation forest may be ascribed as additional reasons. Those results may be potentially useful for the management and afforestation of Mongolian pine plantations on sandy land in arid and semi-arid areas.
基金The paper was supported by the project of integrated mangrove management and coastal protection(IMMCP) in Leizhou Peninsula Guangdong Province.
文摘The exotic Sonneratia apetala in Leizhou Peninsula, has shown outstanding fast-growing ability in restored mangrove forests, at the middle and high tide intertidal zone, with year-round fresh water input from drainage. By setting plot and selecting standard tree, investigation and measurement on height growth, diameter growth, biomass, productivity, and so on, were made in a S. apetala plantation at age of six at Lanbei, Fucheng, Leizhou Peninsula in May 2001. The investigating results showed that the mean annual height growth of plantation was 2.03 m and mean annual growth of diameter at breast height (DBH) was 2.35 cm. There exists a significant correlation between the diameter at ground surface (DGS) and DBH. The average biomass of a single standard tree in dry weight was 95.647 kg/m2. A ratio of above-ground biomass to under-ground biomass was 1.60. The stand biomass of unit area was 22.955 kg/m2, singletree wood volume was 88.23 dm3, and the annual wood volume productivity (PA) of the same year was 0.407. The forest energy accumulation was 424.851 MJ/m2, with annual solar energy fixing rate of 40.68 ×10-7%. It is concluded that S. apetala species had characteristics of outstanding high biomass accumulation and could be used as coastal planting tree species in southern China.
文摘The stand growth and yield dynamic models for Larch in Jilin Province were developed based on the forest growth theories with the forest continuous inventory data. The results indicated that the developed models had high precision, and they could be used for the updating data of inventory of planning and designing and optimal decision of forest management.
文摘This paper makes a brief introduction of the ecological environment, forestry achievements, and the existing questions of Jilin Province. The task of forest ecological network and eight questions demanding prompt solution were discussed based on the present situation of forestry in Jilin Province. The author also made prospects for future application of bio-technique, infor-mation technology, new material technology and nuisance-free forest health technology in forest ecological network.
基金supported by National Natural Science Foundation of China (No.30471386)Japanese Society for Promotion of Sciences (15P03118)
文摘Structure, species composition, and soil properties of a subtropical evergreen broad-leaved forest in Okinawa, Japan, were examined by establishment of plots at thirty sites. The forest was characterized by a relatively low canopy and a large number of small-diameter trees. Mean canopy height for this forest was 10 m and stands contained an average of 5400 stems-ha^-1 ( -〉 3.0 cm DBH); 64% of those stems were smaller than 10 cm DBH. The total basal area was 54.4 m^2-ha^-1, of which Castanopsis sieboldii contributed 48%. The forest showed high species diversity of trees. 80 tree species (≥ 3.0 cm DBH) from 31 families was identified in the thirty sampling plots. C. sieboldii and Schima wallichii were the dominant and subdominant species in terms of importance value. The mean tree species diversity indices for the plots were, 3.36 for Diversity index (H'), 0.71 for Equitability index (J') and 4.72 for Species richness index (S'), all of which strongly declined with the increase of importance value of the dominant, C. sieboldii. Measures of soil nutrients indicated low fertility, extreme heterogeneity and possible A1 toxicity. Regression analysis showed that stem density and the dominant tree height were significantly correlated with soil pH. There was a significant positive relationship between species diversity index and soil exchangeable K^+, Ca^2+, and Ca^2+/Al^3- ratio (all p values 〈0.001) and a negative relationship with N, C and P. The results suggest that soil property is a major factor influencing forest composition and structure within the subtropical forest in Okinawa.
基金Hundred Scientists" Project of Ch inese Academy of Sciences.
文摘Aboveground vertical profiles of N2O concentrations were measured with in two natural coniferous-deciduous mixed forests of 1998 and 1999 in Changbai M ountain. Significant high N2O concentrations were found in six profiles out of t welve profiles. The results showed that high concentrations were 3.03% to 64.9% higher than the "normal concentrations" in these six profiles. Differences betwe en the high concentrations and the "normal concentrations" were statistically si gnificant. The simultaneous occurrence of high concentrations at/nearby the cano py height and normal concentrations at the trunk space height indicated an efflu x of N2O from foliage to atmosphere. This study afforded evidence supporting tha t plant per se, besides forest soil, was an important source of atmospheric N2O in a forest ecosystem.
基金This research was funded by a sub-program of the Ninth Five Years of China: "Study and demonstration of combating technique of sandy disasters in sub-humid-semi-dry zone Yongding River Sandlot"(96-017-01-01).
文摘Based on theories of protective forests and landscape ecology, the reasonableness of structures and patterns of shelterbelt system at Beizang Town, Daxing County, Beijing were analyzed and assessed from the two scales of forest belts and networks, by integrating uses of field investigation, GIS and RS techniques. Results showed that the existent main belt (3-12 m in width) was too narrow, while the assistant belt (3-27.1 m in width) was too wide; the species composition of the existent shelterbelts was single, and the structures and patterns of the shelterbelt system were unreasonable. It is suggested that the structure of the main and the assistant belts should be changed, such as increasing the width of main belts, decreasing the width of assistant belt, and planting more mixed species, and the pattern with arbores in the middle and shrubs in the sides of belts could be taken into account. For the landscape structure of forest network after regenerating or reconstruction, the grid number of closed network should be 13 per km2 and the minimum number of belts should be 34 per km2. This study also testified that integrating GIS and remote technique with landscape ecology could provide an effective method for reasonable reconstruction of the structures and patterns of shelterbelts system.
基金supported partly by the Guangzhou Natural Science Foundation (Grant No.2007Z3-EO581)the Guangdong Provincial Natural Science Foundation (Grant No.2007A0200300001-7)+1 种基金the Chinese High-Tech 863 Project (Grant No.2006AA09Z422)the National Natural Science Foundation of China(Grant No. 20572136).
文摘Mangrove endophytic fungus 1893 was isolated from Kandelia candel from an estuarine mangrove on the South China Sea Coast Two new lactones 1893A and 1893B, together with other known compounds, have been isolated from its fermentation broth. To classify the endophyte correctly for further industrial application, a combination of morphological and molecular techniques was used to approach its identity. The endophyte was compared with similar species having trichogynes or trichogyne-like hyphae which apparently fused with an- theridium-like hyphae, and perithecia initials developing from an ascogonial coil surrounded by enveloping hyphae in early developmental stages on pure culture. Further morphological characteristics on host and non-host were used for comparison with similar species when the endophyte was cultivated on leaves ofKandelia candel and Mangifera indica, respectively, which resulted in classifying the endophyte as a Phomopsis specics. The ITS sequence of rDNA was used to infer its phylogenetic relationships with Phomopsis species that resembled the strain in morphology or ecology. Finally, the endophyte was identified as Diaporthe phaseolorum var. sojae based on morphological and molecular evidence. Our study is a first report ofDiaporthephaseolorum var. sojae isolated from mangrove Kandelia candel.
基金the National Key Technologies R&D Program of China (2006BAD03A09)the National Science Fund of China (40841001)
文摘A new model was developed to predict forestland demand of China during the years of 2010-2050 in terms of the concept of forest ecosystem services. On the basis of the relationship between forest ecosystem services and classified forest management, we hypothesized that the ecological-forest provides ecological services, whereas commercial-forest supplies wood and timber production, and the influences of the growth of population, social-economic development target, forest management methods and the technology changes on forest resources were also taken into account. The prediction reveals that the demand of total forestland of China will be 244.8, 261.2 and 362.2 million ha by the year 2010, 2020 and 2050, respectively. The results demonstrated that China will be confronted with a shortage of forest resources, especially with lack of ecological-oriented forests, in the future. It is suggested that sustainable management of forest resources must be reinforced and more attention should be drown no enhancing the service function of forest ecosystem.
基金national key basic develop-ment of China (G1999043407), grant from the National Natural Science Foundation of China (No. 30271068) and KZ-CX-SW-01-01B of the Chinese Academy of Sciences.
文摘Soil water stress was studied on the potted seedlings of five dominant tree species (Pinus koraienes Sieb.et Zucc., Fraxinus mandshurica Rupr., Juglans mandshurica Maxim, Tilia amurensis Rupr. and Quercus mongolica Fisch.ex Turcz) from the broadleaved/Korean pine forest in Changbai Mountain. Leaf growth, water transpiration and photosynthesis were compared for each species under three soil moisture conditions: 85%-100% (high water, CK), 65%-85% (Medium water, MW) and 45%-65% (low water, LW) of 37.4% water-holding capacity in field. The results showed that the characteristic of typical drought-resistance of the leaves is significantly developed. The net photosynthetic rate and water use efficiency of Fraxinus mandshurica were higher in MW than those in CK. But for the other four species, the net photosynthetic rate and water use efficiency in CK were lower than those in MW and LW. The transpiration rate responding to soil moistures varied from species to species.