期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于因果事件抽取驱动关键法律要素感知的林法类案检索模型构建
1
作者
田萱
谢格云
吴志超
《农业机械学报》
北大核心
2025年第8期411-418,446,共9页
林法类案检索旨在找到与输入案例事实相似的历史林法判决案例,在林业智能法律系统中发挥着核心作用。现有的类案检索模型缺乏对法律案文特定结构内关键法律要素的考虑,无法准确利用关键法律要素蕴含的深层语义信息,导致在相似候选案例...
林法类案检索旨在找到与输入案例事实相似的历史林法判决案例,在林业智能法律系统中发挥着核心作用。现有的类案检索模型缺乏对法律案文特定结构内关键法律要素的考虑,无法准确利用关键法律要素蕴含的深层语义信息,导致在相似候选案例的检索场景中表现欠佳。在林业法律案文中,关键法律要素通常出现在以林木为主体的因果事件中,为此,提出一种因果事件抽取驱动关键法律要素感知的林法类案检索模型(Causal event extraction-driven key legal element-aware model,CEKLE),该模型在将法律案文拆分为“前言”、“事实”、“分析”、“判决”和“尾文”5部分基础上,重点关注林业法律案文的“事实”与“分析”2部分,结合因果事件抽取,获取相应因果事件,从而准确感知案例关键法律要素位置,充分挖掘关键法律语义信息,以提升林法类案检索准确性。2个数据集上的实验结果表明,在林法类案检索中CEKLE优于最先进的基线模型。
展开更多
关键词
林法类案检索
关键法律要素
结构划分
因果事件抽取
在线阅读
下载PDF
职称材料
题名
基于因果事件抽取驱动关键法律要素感知的林法类案检索模型构建
1
作者
田萱
谢格云
吴志超
机构
北京林业大学信息学院(人工智能学院)
国家林业草原林业智能信息处理工程技术研究中心
出处
《农业机械学报》
北大核心
2025年第8期411-418,446,共9页
基金
北京市科技计划项目(Z251100004525006)。
文摘
林法类案检索旨在找到与输入案例事实相似的历史林法判决案例,在林业智能法律系统中发挥着核心作用。现有的类案检索模型缺乏对法律案文特定结构内关键法律要素的考虑,无法准确利用关键法律要素蕴含的深层语义信息,导致在相似候选案例的检索场景中表现欠佳。在林业法律案文中,关键法律要素通常出现在以林木为主体的因果事件中,为此,提出一种因果事件抽取驱动关键法律要素感知的林法类案检索模型(Causal event extraction-driven key legal element-aware model,CEKLE),该模型在将法律案文拆分为“前言”、“事实”、“分析”、“判决”和“尾文”5部分基础上,重点关注林业法律案文的“事实”与“分析”2部分,结合因果事件抽取,获取相应因果事件,从而准确感知案例关键法律要素位置,充分挖掘关键法律语义信息,以提升林法类案检索准确性。2个数据集上的实验结果表明,在林法类案检索中CEKLE优于最先进的基线模型。
关键词
林法类案检索
关键法律要素
结构划分
因果事件抽取
Keywords
forestry legal case retrieval
key legal element
structure partition
causal event extraction
分类号
TP391.1 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于因果事件抽取驱动关键法律要素感知的林法类案检索模型构建
田萱
谢格云
吴志超
《农业机械学报》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部