期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Application of optimized random forest regressors in predicting maximum principal stress of aseismic tunnel lining
1
作者 MEI Xian-cheng DING Chang-dong +4 位作者 ZHANG Jia-min LI Chuan-qi CUI Zhen SHENG Qian CHEN Jian 《Journal of Central South University》 CSCD 2024年第11期3900-3913,共14页
Using flexible damping technology to improve tunnel lining structure is an emerging method to resist earthquake disasters,and several methods have been explored to predict mechanical response of tunnel lining with dam... Using flexible damping technology to improve tunnel lining structure is an emerging method to resist earthquake disasters,and several methods have been explored to predict mechanical response of tunnel lining with damping layer.However,the traditional numerical methods suffer from the complex modelling and time-consuming problems.Therefore,a prediction model named the random forest regressor(RFR)is proposed based on 240 numerical simulation results of the mechanical response of tunnel lining.In addition,circle mapping(CM)is used to improve Archimedes optimization algorithm(AOA),reptile search algorithm(RSA),and Chernobyl disaster optimizer(CDO)to further improve the predictive performance of the RFR model.The performance evaluation results show that the CMRSA-RFR is the best prediction model.The damping layer thickness is the most important feature for predicting the maximum principal stress of tunnel lining containing damping layer.This study verifies the feasibility of combining numerical simulation with machine learning technology,and provides a new solution for predicting the mechanical response of aseismic tunnel with damping layer. 展开更多
关键词 maximum principal stress aseismic tunnel lining random forest regressor machine learning
在线阅读 下载PDF
森林曲(小说)
2
作者 刘勇 《林业与生态》 1994年第6期17-18,共2页
关键词 林曲 三十一岁 知远 去问 就这样 赔偿损失 给你 林回 声地 礼问
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部