期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
改进YOLOv8n的林业害虫检测方法 被引量:1
1
作者 陈万志 袁航 《北京林业大学学报》 北大核心 2025年第2期119-131,共13页
【目的】针对现有林业害虫检测方法检测速度慢,检测类别少,小目标害虫检测效果差等问题,提出了一种改进YOLOv8n的林业害虫检测方法。【方法】首先,采用高效多尺度级联注意力特征提取网络EfficientViT作为改进模型的主干网络,降低计算复... 【目的】针对现有林业害虫检测方法检测速度慢,检测类别少,小目标害虫检测效果差等问题,提出了一种改进YOLOv8n的林业害虫检测方法。【方法】首先,采用高效多尺度级联注意力特征提取网络EfficientViT作为改进模型的主干网络,降低计算复杂度,提高检测速度;其次,通过构建多尺度自适应特征融合模块DA-C2F提升模型在复杂背景下害虫目标的聚焦能力和识别精度,此外新增的小目标检测头XSH能够进一步提升小目标害虫的检测能力;最后,采用基于最小点距离交并比损失函数MPDIoU作为模型的边界框损失,提升网络收敛速度,进一步增强害虫目标的定位准确率。【结果】改进模型的检测精确率、召回率、平均精度、平均精度均值(mAP50-95)和F_(1)分数分别达到98.6%、95.7%、98.3%、85.6%和0.979,前4者较原模型分别提升了3.9、2.6、2.8、2.5个百分点,F_(1)分数提升了4.4%;检测速度(帧率)达到了95帧/秒,提升了15.9%,优于更轻量级的模型。此外,对比其他检测模型,改进模型对飞蛾类害虫的检测精确率提升了11.2个百分点,并且两种独立飞蛾害虫综合检测的表现也更为优异。【结论】本研究提出的方法对于林业害虫的检测准确度更高,检测速度更快,且对多类别害虫的检测精度更高,改进模型的泛化能力更强。 展开更多
关键词 深度学习 卷积神经网络(CNN) 林业害虫检测 YOLOv8n 多尺度级联注意力特征提取网络 多尺度自适应特征融合 小目标检测
在线阅读 下载PDF
基于注意力模型和轻量化YOLOv4的林业害虫检测方法 被引量:8
2
作者 孙海燕 陈云博 +2 位作者 封丁惟 王通 蔡兴泉 《计算机应用》 CSCD 北大核心 2022年第11期3580-3587,共8页
针对当前林业害虫检测方法检测速度慢、准确率较低和存在漏检误检等问题,提出一种基于注意力模型和轻量化YOLOv4的林业害虫检测方法。首先构建数据集,使用几何变换、随机色彩抖动和Mosaic数据增强技术对数据集进行预处理;其次将YOLOv4... 针对当前林业害虫检测方法检测速度慢、准确率较低和存在漏检误检等问题,提出一种基于注意力模型和轻量化YOLOv4的林业害虫检测方法。首先构建数据集,使用几何变换、随机色彩抖动和Mosaic数据增强技术对数据集进行预处理;其次将YOLOv4的主干网络替换为轻量化网络MobileNetV3,并在改进后的路径聚合网络(PANet)中添加卷积块注意力模块(CBAM),搭建改进的轻量化YOLOv4网络模型;然后引入Focal Loss优化YOLOv4网络模型的损失函数;最后将预处理后的数据集输入到改进后的网络模型中,输出包含害虫种类和位置信息的检测结果。实验结果表明,该网络的各项改进点对模型的性能提升都有效;相较于原YOLOv4模型,新模型的检测速度更快,平均精度均值(mAP)更高,并且能有效解决漏检和误检问题。新模型优于目前的主流网络模型,能满足林业害虫实时检测的精度和速度要求。 展开更多
关键词 林业害虫检测 轻量化网络 注意力模型 损失函数
在线阅读 下载PDF
基于深度学习的林业害虫检测优化 被引量:7
3
作者 赵严 刘应安 +1 位作者 业巧林 周小亮 《液晶与显示》 CAS CSCD 北大核心 2022年第9期1216-1227,共12页
目前林业害虫检测研究多数基于传统机器学习算法,且存在精度低、效果差的问题。对此,提出了一种基于深度学习模型YOLOv4的林业害虫检测模型——Pest-YOLOv4。采用K-means++算法聚类先验框,提高了先验框avg-IoU值。将ECA(Efficient Chann... 目前林业害虫检测研究多数基于传统机器学习算法,且存在精度低、效果差的问题。对此,提出了一种基于深度学习模型YOLOv4的林业害虫检测模型——Pest-YOLOv4。采用K-means++算法聚类先验框,提高了先验框avg-IoU值。将ECA(Efficient Channel Attention)和CBAM(Convolutional Block Attention Module)结合,构成ECA-CBAM注意力机制,使网络更多关注有利于林业害虫检测的特征信息。重新组织网络颈部,构成SPP-PANet,融合多重感受野捕获的特征信息。利用Focal Loss思想改进损失函数,在平衡正负样本比例的同时关注难区分样本的学习。实验结果表明,Pest-YOLOv4林业害虫检测模型mAP达到90.4%,相较于YOLOv4提高4.2%,FPS保持在33.4 f/s,满足林业害虫检测任务的检测精度与实时性要求。 展开更多
关键词 林业害虫检测 深度学习 Pest-YOLOv4 注意力机制 Focal Loss
在线阅读 下载PDF
一种基于YOLOv4⁃TIA的林业害虫实时检测方法 被引量:26
4
作者 候瑞环 杨喜旺 +1 位作者 王智超 高佳鑫 《计算机工程》 CAS CSCD 北大核心 2022年第4期255-261,共7页
针对现有基于深度学习的林业昆虫图像检测方法存在检测精度低和检测速度慢的问题,提出一种结合改进PANet结构与三分支注意力机制的目标检测方法YOLOv4-TIA。通过对样本数量较少的昆虫类别进行数据增强,实现样本均衡分布。利用三分支注... 针对现有基于深度学习的林业昆虫图像检测方法存在检测精度低和检测速度慢的问题,提出一种结合改进PANet结构与三分支注意力机制的目标检测方法YOLOv4-TIA。通过对样本数量较少的昆虫类别进行数据增强,实现样本均衡分布。利用三分支注意力机制改进YOLOv4中的CSPDarkNet53骨干网络,同时通过旋转操作和残差变换建立维度间的依存关系,以提高有效的特征通道权重,在PANet结构上增加将跳跃连接与跨尺度连接相结合的特征融合方式,从而获取更丰富的语义信息和位置信息。在此基础上,采用Focal loss函数优化分类损失,解决正负样本不均衡的问题。实验结果表明,该方法的精确率和召回率分别达到85.9%和91.2%,相比SSD、Faster R-CNN、YOLOv4方法,其在保证检测速度的同时,能够有效提高检测精度,且实现对林业害虫的实时精确监测。 展开更多
关键词 林业害虫检测 YOLOv4模型 深度学习 三分支注意力 Focal loss函数 加权双向特征金字塔网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部