The dynamic recrystallization and carbides precipitation of the Cr-Co-Mo-Ni bearing steel were investigated by hot compression tests performed at temperatures ranging from 850 ℃to 1080 ℃ with strain rate of 1-20 s-1...The dynamic recrystallization and carbides precipitation of the Cr-Co-Mo-Ni bearing steel were investigated by hot compression tests performed at temperatures ranging from 850 ℃to 1080 ℃ with strain rate of 1-20 s-1. The activation energy(Q) for the tested steel is calculated to be around 682.99 k J/mol at a deformation strain of 0.6. Microstructural analysis by SEM shows that the dynamic recrystallization(DRX) behavior is dependent sensitively on the deformation strain, temperature and strain rate, while an exponential relationship between DRX grain size and Z parameter is obtained from the computational formula. Moreover, the M6C-type carbides(〈1 μm) act as the main prohibitor of grain coarsening, and the polynomial regression relationship between them is worked out. With electron backscatter diffraction(EBSD) observation, DRX is the main nucleation mechanism responsible for the formation of new grains during hot compression. In conclusion, the interaction between DRX affected by hot deformation parameters and carbides precipitation determines the ultimate grain size refinement.展开更多
The microstructure evolutions of two A1-Zn-Mg alloys, one of which was alloyed with Sc and Zr, and the kinetics of A13(SCl-xZrx) precipitates in the A1-Zn-Mg alloy during homogenization were investigated. Both alloy...The microstructure evolutions of two A1-Zn-Mg alloys, one of which was alloyed with Sc and Zr, and the kinetics of A13(SCl-xZrx) precipitates in the A1-Zn-Mg alloy during homogenization were investigated. Both alloys under as-cast condition with supersaturated, non-equilibrium T(Mg32(A1, Zn)49) phase and impurities phase were displayed. When the homogenization temperatures are below 350 ~C, Zn and Mg atoms precipitate from matrix; however, when the temperatures are above 400 ~C, T phase dissolves into matrix, enhancing solid-solution strengthening. Kinetics of A13(Scl.xZrx) precipitates was studied based on Jmat Pro software calculation and the difference values between the hardness of the two alloys in each homogenization condition. The calculations predict that the Sc and Zr solubilities in ct-A1 decline with the presence of Mg and Zn. Investigation of the difference values reveals that when the temperature is between 300 ~C and 350 ~C, the nucleation rate of A13(Sc1-xZrx) precipitates is the highest and the strengthening effect from A13(SCl_xZrx) precipitates is the best. After homogenization at 470℃ for 12 h, non-equilibrium T phase disappears, while impurity phase remains. The mean diameter of A13(Scl_xZrx) precipitates is around 18 urn. Ideas about better fulfilling the potentials of Sc and Zr were proposed at last.展开更多
A thermodynamics analysis on the leaching process of selenium residue and discussion on the behaviors of aqueous ionic in the leaching process were carried out. Through thermodynamical calculation, the values of AG an...A thermodynamics analysis on the leaching process of selenium residue and discussion on the behaviors of aqueous ionic in the leaching process were carried out. Through thermodynamical calculation, the values of AG and relevant potential expressions were obtained. According to these thermodynamical data, the φ-pH diagrams of Se-H2O system at 298 and 373 K were obtained; Simultaneously, the φ-pH diagrams of SO2-H2O and SO2-Se-H2O systems were drawn at 298 K. With increasing the temperature, the stable regions of HSeO3, SeO2- and SeO2- in the φ-pH diagram of Se-H2O system become gradually large, but the limits of pH in the stable region become gradually small. The stability area of reduction precipitation in the SO2-Se-H2O system was finally determined. The results of oxidization leaching experiments of selenium residue indicate that when the mass ratio of selenium residue to sodium chlorate is 2, the concentration of sulfuric acid is 300 g/L and the residue is agitated for 3 h at leaching temperature of 80 ℃, the leaching rate of selenium could reach 97.76 %. The experimental results conform the calculated results by φ-pH diagram. The selenium reduction precipitation in oxidization-leaching solution was analyzed under the conditions of acidity of 150 g/L, the sodium sulphite concentration of 35 g/L at the reductive temperature of 23 ℃ for 120 min. And this demonstrates the thermodynamics analysis.展开更多
基金Project(2012AA03A503) supported by the National High Technology Research and Development Program of China
文摘The dynamic recrystallization and carbides precipitation of the Cr-Co-Mo-Ni bearing steel were investigated by hot compression tests performed at temperatures ranging from 850 ℃to 1080 ℃ with strain rate of 1-20 s-1. The activation energy(Q) for the tested steel is calculated to be around 682.99 k J/mol at a deformation strain of 0.6. Microstructural analysis by SEM shows that the dynamic recrystallization(DRX) behavior is dependent sensitively on the deformation strain, temperature and strain rate, while an exponential relationship between DRX grain size and Z parameter is obtained from the computational formula. Moreover, the M6C-type carbides(〈1 μm) act as the main prohibitor of grain coarsening, and the polynomial regression relationship between them is worked out. With electron backscatter diffraction(EBSD) observation, DRX is the main nucleation mechanism responsible for the formation of new grains during hot compression. In conclusion, the interaction between DRX affected by hot deformation parameters and carbides precipitation determines the ultimate grain size refinement.
基金Project(JPPT-115-2-948) supported by the National Civilian Matched Project of China
文摘The microstructure evolutions of two A1-Zn-Mg alloys, one of which was alloyed with Sc and Zr, and the kinetics of A13(SCl-xZrx) precipitates in the A1-Zn-Mg alloy during homogenization were investigated. Both alloys under as-cast condition with supersaturated, non-equilibrium T(Mg32(A1, Zn)49) phase and impurities phase were displayed. When the homogenization temperatures are below 350 ~C, Zn and Mg atoms precipitate from matrix; however, when the temperatures are above 400 ~C, T phase dissolves into matrix, enhancing solid-solution strengthening. Kinetics of A13(Scl.xZrx) precipitates was studied based on Jmat Pro software calculation and the difference values between the hardness of the two alloys in each homogenization condition. The calculations predict that the Sc and Zr solubilities in ct-A1 decline with the presence of Mg and Zn. Investigation of the difference values reveals that when the temperature is between 300 ~C and 350 ~C, the nucleation rate of A13(Sc1-xZrx) precipitates is the highest and the strengthening effect from A13(SCl_xZrx) precipitates is the best. After homogenization at 470℃ for 12 h, non-equilibrium T phase disappears, while impurity phase remains. The mean diameter of A13(Scl_xZrx) precipitates is around 18 urn. Ideas about better fulfilling the potentials of Sc and Zr were proposed at last.
基金Project(51072233) supported by the National Natural Science Foundation of China
文摘A thermodynamics analysis on the leaching process of selenium residue and discussion on the behaviors of aqueous ionic in the leaching process were carried out. Through thermodynamical calculation, the values of AG and relevant potential expressions were obtained. According to these thermodynamical data, the φ-pH diagrams of Se-H2O system at 298 and 373 K were obtained; Simultaneously, the φ-pH diagrams of SO2-H2O and SO2-Se-H2O systems were drawn at 298 K. With increasing the temperature, the stable regions of HSeO3, SeO2- and SeO2- in the φ-pH diagram of Se-H2O system become gradually large, but the limits of pH in the stable region become gradually small. The stability area of reduction precipitation in the SO2-Se-H2O system was finally determined. The results of oxidization leaching experiments of selenium residue indicate that when the mass ratio of selenium residue to sodium chlorate is 2, the concentration of sulfuric acid is 300 g/L and the residue is agitated for 3 h at leaching temperature of 80 ℃, the leaching rate of selenium could reach 97.76 %. The experimental results conform the calculated results by φ-pH diagram. The selenium reduction precipitation in oxidization-leaching solution was analyzed under the conditions of acidity of 150 g/L, the sodium sulphite concentration of 35 g/L at the reductive temperature of 23 ℃ for 120 min. And this demonstrates the thermodynamics analysis.