期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
纳米析出强化高熵合金的研究进展
1
作者 郭嘉鸣 倪冰雨 焦增宝 《中国材料进展》 北大核心 2025年第1期31-39,123,124,共11页
纳米析出强化是提高高熵合金强度的重要方法,理解纳米析出相的形成机理及其对高熵合金力学性能的影响机制,对设计和开发高性能高熵合金具有重要意义。系统综述了纳米析出强化高熵合金的研究进展和未来展望,重点讨论了共格析出、非共格... 纳米析出强化是提高高熵合金强度的重要方法,理解纳米析出相的形成机理及其对高熵合金力学性能的影响机制,对设计和开发高性能高熵合金具有重要意义。系统综述了纳米析出强化高熵合金的研究进展和未来展望,重点讨论了共格析出、非共格析出和复合析出等不同析出形式对高熵合金力学行为和强韧化机制的影响。共格析出相凭借其与基体良好的晶格匹配性和应力传递能力,在显著强化合金的同时保持了良好的塑性;非共格析出相可显著增强合金的加工硬化能力,但需要合理调控其形貌、尺寸和分布,并充分利用高熵合金基体优异的塑性和应变硬化能力,也可以实现强韧性的良好匹配;多种纳米相的复合析出可有效发挥不同析出相的集成优势,为高熵合金的性能优化提供了新思路。需要指出,尽管纳米析出强化高熵合金极具应用前景,但在热稳定性、高温性能和工业化生产成本等方面仍面临挑战,需要进一步深入研究。对纳米析出强化高熵合金的研究现状和关键问题进行了系统归纳,可为今后设计高性能高熵合金提供重要指导依据。 展开更多
关键词 高熵合金 析出强化 析出组织 复合析出 力学性能
在线阅读 下载PDF
Al-4Cu-1.3Mg-0.9Si合金的析出强化行为 被引量:2
2
作者 曾延琦 王锋 +4 位作者 熊柏青 张永安 李锡武 李志辉 刘红伟 《航空材料学报》 EI CAS CSCD 北大核心 2012年第3期1-4,共4页
通过硬度测试、差示扫描量热法(DSC)分析、拉伸性能测试和透射电镜(TEM)微观组织观察,研究了Al-4Cu-1.3Mg-0.9Si合金的析出强化行为。结果表明:合金具有较强的析出强化能力;合金在160~220℃下时效,随时效温度的升高,合金的时效响应速... 通过硬度测试、差示扫描量热法(DSC)分析、拉伸性能测试和透射电镜(TEM)微观组织观察,研究了Al-4Cu-1.3Mg-0.9Si合金的析出强化行为。结果表明:合金具有较强的析出强化能力;合金在160~220℃下时效,随时效温度的升高,合金的时效响应速率加快,时效峰值硬度有所下降;合金在190℃时效态时,其主要析出相为S相,在190℃/24h时效态合金中还发现少量的方块状相;合金经190℃/24h时效后其常温和高温抗拉强度较同等条件下制备、同等热处理状态下的Al-4Cu-1.3Mg合金有明显的提高。 展开更多
关键词 Al-Cu—Mg—Si合金 析出强化 微观组织 力学性能
在线阅读 下载PDF
Effect of hot deformation on grain structure and quench sensitivity in 7085 aluminum alloy
3
作者 LI Cheng-bo ZHAO Cai +2 位作者 CAO Pu-li ZHU Dai-bo XIAO Bo 《Journal of Central South University》 2025年第4期1223-1236,共14页
The effect of hot deformation on the quench sensitivity of the 7085 alloy was studied through hardness testing and microstructure characterization.The findings indicate that hot deformation enhances the quench sensiti... The effect of hot deformation on the quench sensitivity of the 7085 alloy was studied through hardness testing and microstructure characterization.The findings indicate that hot deformation enhances the quench sensitivity of the 7085 alloy,with the hardness difference between water quenching and air cooling increasing from 5.4%(before hot deformation)to 10.4%(after hot deformation).In the undeformed samples,the Al3Zr particles within the grains exhibit better coherent with the Al matrix.During slow quenching,only theηphase is observed on Al3Zr particles and at the grain boundaries.Hot deformation leads to a mass of recrystallization and the formation of subgrains with high dislocation density.This results in an increase in the types,quantities,and sizes of heterogeneous precipitates during quenching.In the slow quenching process,high angle grain boundaries are best for the nucleation and growth of theηphase.Secondly,a substantial quantity ofηand T phases precipitate on the non-coherent Al3Zr phase within the recrystallized grains.The locations with high dislocation density subgrains(boundaries)serve as nucleation positions for theηand T phases precipitating.Additionally,the Y phase is observed to precipitate at dislocation sites within the subgrains. 展开更多
关键词 hot deformation 7085 aluminum alloy MICROSTRUCTURE heterogeneous precipitation quench sensitivity
在线阅读 下载PDF
Effect of a novel three-step aging on strength, stress corrosion cracking and microstructure of AA7085 被引量:4
4
作者 陈送义 陈康华 +3 位作者 董朋轩 叶升平 黄兰萍 阳代军 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第8期1858-1862,共5页
The influence of a novel three-step aging on strength, stress corrosion cracking(SCC) and microstructure of AA7085 was investigated by tensile testing and slow strain rate testing combined with transmission electron m... The influence of a novel three-step aging on strength, stress corrosion cracking(SCC) and microstructure of AA7085 was investigated by tensile testing and slow strain rate testing combined with transmission electron microscopy(TEM). The results indicate that with the increase of second-step aging time of two-step aging, the mechanical properties increase first and then decrease, while the SCC resistance increases. Compared with two-step aging, three-step aging treatment improves SCC resistance and the strength increases by about 5%. The effects of novel three-step aging on strength and SCC resistance are explained by the role of matrix precipitates and grain boundary precipitates, respectively. 展开更多
关键词 7085 aluminum alloy three-step aging STRENGTH stress corrosion cracking MICROSTRUCTURE
在线阅读 下载PDF
Influence of temperature on creep behavior,mechanical properties and microstructural evolution of an Al-Cu-Li alloy during creep age forming 被引量:3
5
作者 ZHOU Chang ZHAN Li-hua +2 位作者 LI He ZHAO Xing HUANG Ming-hui 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第8期2285-2294,共10页
The effect of temperature in range of 155-175 ℃ on the creep behavior, microstructural evolution, and precipitation of an Al-Cu-Li alloy was experimentally investigated during creep ageing deformation under 180 MPa f... The effect of temperature in range of 155-175 ℃ on the creep behavior, microstructural evolution, and precipitation of an Al-Cu-Li alloy was experimentally investigated during creep ageing deformation under 180 MPa for 20 h. Increasing temperature resulted in a noteworthy change in creep ageing behaviour, including a variation in creep curves, an improvement in creep rate during early creep ageing, and an increased creep strain. Tensile tests indicate that the specimen aged at higher temperature reached peak strength within a shorter time. Transmission electron microscopy(TEM) was employed to explore the effect of temperature on the microstructural evolution of the AA2198 during creep ageing deformation. Many larger dislocations and even tangled dislocation structures were observed in the sample aged at higher temperature. The number of T1 precipitates increased at higher ageing temperature at the same ageing time. Based on the analysed results, a new mechanism, considering the combined effects of the formation of larger dislocation structures induced by higher temperature and diffusion of solute atoms towards these larger or tangled dislocations, was proposed to explain the effect of temperature on microstructural evolution and creep behaviour. 展开更多
关键词 Al-Cu-Li alloys creep age forming mechanical properties MICROSTRUCTURE PRECIPITATION
在线阅读 下载PDF
Microstructure evolution and Al_3(Sc_(1-x)Zr_x) precipitates' kinetics in Al-Zn-Mg alloy during homogenization 被引量:6
6
作者 段佳琦 尹志民 +2 位作者 赵凯 邓英 雷学峰 《Journal of Central South University》 SCIE EI CAS 2013年第3期579-586,共8页
The microstructure evolutions of two A1-Zn-Mg alloys, one of which was alloyed with Sc and Zr, and the kinetics of A13(SCl-xZrx) precipitates in the A1-Zn-Mg alloy during homogenization were investigated. Both alloy... The microstructure evolutions of two A1-Zn-Mg alloys, one of which was alloyed with Sc and Zr, and the kinetics of A13(SCl-xZrx) precipitates in the A1-Zn-Mg alloy during homogenization were investigated. Both alloys under as-cast condition with supersaturated, non-equilibrium T(Mg32(A1, Zn)49) phase and impurities phase were displayed. When the homogenization temperatures are below 350 ~C, Zn and Mg atoms precipitate from matrix; however, when the temperatures are above 400 ~C, T phase dissolves into matrix, enhancing solid-solution strengthening. Kinetics of A13(Scl.xZrx) precipitates was studied based on Jmat Pro software calculation and the difference values between the hardness of the two alloys in each homogenization condition. The calculations predict that the Sc and Zr solubilities in ct-A1 decline with the presence of Mg and Zn. Investigation of the difference values reveals that when the temperature is between 300 ~C and 350 ~C, the nucleation rate of A13(Sc1-xZrx) precipitates is the highest and the strengthening effect from A13(SCl_xZrx) precipitates is the best. After homogenization at 470℃ for 12 h, non-equilibrium T phase disappears, while impurity phase remains. The mean diameter of A13(Scl_xZrx) precipitates is around 18 urn. Ideas about better fulfilling the potentials of Sc and Zr were proposed at last. 展开更多
关键词 A1-Zn-Mg-Sc-Zr alloy HOMOGENIZATION A13(SCl_xZrx) precipitates KINETICS microstructures
在线阅读 下载PDF
Carbide precipitation and microstructure refinement of Cr-Co-Mo-Ni bearing steel during hot deformation 被引量:7
7
作者 袁晓虹 郑善举 +1 位作者 杨卯生 赵昆渝 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第9期3265-3274,共10页
The dynamic recrystallization and carbides precipitation of the Cr-Co-Mo-Ni bearing steel were investigated by hot compression tests performed at temperatures ranging from 850 ℃to 1080 ℃ with strain rate of 1-20 s-1... The dynamic recrystallization and carbides precipitation of the Cr-Co-Mo-Ni bearing steel were investigated by hot compression tests performed at temperatures ranging from 850 ℃to 1080 ℃ with strain rate of 1-20 s-1. The activation energy(Q) for the tested steel is calculated to be around 682.99 k J/mol at a deformation strain of 0.6. Microstructural analysis by SEM shows that the dynamic recrystallization(DRX) behavior is dependent sensitively on the deformation strain, temperature and strain rate, while an exponential relationship between DRX grain size and Z parameter is obtained from the computational formula. Moreover, the M6C-type carbides(〈1 μm) act as the main prohibitor of grain coarsening, and the polynomial regression relationship between them is worked out. With electron backscatter diffraction(EBSD) observation, DRX is the main nucleation mechanism responsible for the formation of new grains during hot compression. In conclusion, the interaction between DRX affected by hot deformation parameters and carbides precipitation determines the ultimate grain size refinement. 展开更多
关键词 high-alloy steel Z parameter grain size refinement carbides dynamic recrystallization (DRX) mechanism
在线阅读 下载PDF
Stress-level dependency of creep ageing behavior for friction stir welded Al-Cu alloy 被引量:5
8
作者 WANG Dong-yao ZHAN Li-hua +3 位作者 ZHONG Jue TANG Zhi-mao ZENG Quan-qing GAN Ke-fu 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第9期3030-3053,共24页
Creep ageing forming(CAF)has been widely used in the aerospace engineering,but how to optimize the processing conditions,especially under complex stress state of the CAF process for large-size components produced by f... Creep ageing forming(CAF)has been widely used in the aerospace engineering,but how to optimize the processing conditions,especially under complex stress state of the CAF process for large-size components produced by friction-stir welding is still a great challenge to now.In this work,the creep ageing behaviors and underlying microstructure evolution of a thick friction-stir welded Al-Cu alloy plate after CAF process under different stress levels are systematically investigated.The creep strain and the strength of the joint are both significantly increased when the stress is close to the average yield strength of the initial weld joint.The grain size reduces while the local strain and dislocation density increase from top to bottom of the NZ;hence,the bottom layer of the weld joint exhibits higher creep strain and steady-stage creep strain rate during the CAF process.The results reveal that the gradient microstructures sensitive to the stress level effectively govern the creep-ageing performance from the upper to the bottom layer in a thick friction stir welded Al-Cu alloy plate.Rationally increasing the initial dislocation density of the weld joint can both enhance the tensile properties and promote the creep deformation of the weld joint for CAF process. 展开更多
关键词 creep age forming friction stir welding inhomogeneous gradient microstructure thick Al-Cu alloy plate precipitation microstructure evolution mechanical property
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部