The mechanical properties of secondary cells are crucial to the safety and reliability of battery packs,which can fail due to extrusion and vibration in a vehicle crash.To analyze the structural response of the second...The mechanical properties of secondary cells are crucial to the safety and reliability of battery packs,which can fail due to extrusion and vibration in a vehicle crash.To analyze the structural response of the secondary cell and its other dynamic behaviors,the experiment and some numerical simulations were carried out based on single reference impact testing.Then,an equivalent constitutive relationship of the secondary cell was proposed to reveal the dynamic properties and used to guide the safety estimation of the battery pack.As the input parameter to the finite element model,the equivalent constitutive relationship,including but not limited to the elastic modulus and stain-stress curve,determines the simulation precision of the battery packs.Compared to the experimental results of the natural frequency of the battery pack,the simulation error is below 2%when the elastic modulus of the secondary cell in the battery pack has been verified.展开更多
A quantitative structure–activity relationship(QSAR) was performed to analyze antimalarial activities against the D10 strains of Plasmodium falciparum of triazole-linked chalcone and dienone hybrid derivatives using ...A quantitative structure–activity relationship(QSAR) was performed to analyze antimalarial activities against the D10 strains of Plasmodium falciparum of triazole-linked chalcone and dienone hybrid derivatives using partial least squares regression coupled with stepwise forward–backward variable selection method. QSAR analyses were performed on the available IC50 D10 strains of Plasmodium falciparum data based on theoretical molecular descriptors. The QSAR model developed gave good predictive correlation coefficient(r2) of 0.8994, significant cross validated correlation coefficient(q2) of 0.7689, r2 for external test set)(2predr of 0.8256, coefficient of correlation of predicted data set)(2sepred,r of 0.3276. The model shows that antimalarial activity is greatly affected by donor and electron-withdrawing substituents. The study implicates that chalcone and dienone rings should have strong donor and electron-withdrawing substituents as they increase the activity of chalcone. Results show that the predictive ability of the model is satisfactory, and it can be used for designing similar group of antimalarial compounds. The findings derived from this analysis along with other molecular modeling studies will be helpful in designing of the new potent antimalarial activity of clinical utility.展开更多
基金supported by the 2019 Postdoctoral Research Project funded by Hefei Municipal Bureau of Human Resources and Social Security and the National key R&D Program of China(2017YFB0102101).
文摘The mechanical properties of secondary cells are crucial to the safety and reliability of battery packs,which can fail due to extrusion and vibration in a vehicle crash.To analyze the structural response of the secondary cell and its other dynamic behaviors,the experiment and some numerical simulations were carried out based on single reference impact testing.Then,an equivalent constitutive relationship of the secondary cell was proposed to reveal the dynamic properties and used to guide the safety estimation of the battery pack.As the input parameter to the finite element model,the equivalent constitutive relationship,including but not limited to the elastic modulus and stain-stress curve,determines the simulation precision of the battery packs.Compared to the experimental results of the natural frequency of the battery pack,the simulation error is below 2%when the elastic modulus of the secondary cell in the battery pack has been verified.
文摘A quantitative structure–activity relationship(QSAR) was performed to analyze antimalarial activities against the D10 strains of Plasmodium falciparum of triazole-linked chalcone and dienone hybrid derivatives using partial least squares regression coupled with stepwise forward–backward variable selection method. QSAR analyses were performed on the available IC50 D10 strains of Plasmodium falciparum data based on theoretical molecular descriptors. The QSAR model developed gave good predictive correlation coefficient(r2) of 0.8994, significant cross validated correlation coefficient(q2) of 0.7689, r2 for external test set)(2predr of 0.8256, coefficient of correlation of predicted data set)(2sepred,r of 0.3276. The model shows that antimalarial activity is greatly affected by donor and electron-withdrawing substituents. The study implicates that chalcone and dienone rings should have strong donor and electron-withdrawing substituents as they increase the activity of chalcone. Results show that the predictive ability of the model is satisfactory, and it can be used for designing similar group of antimalarial compounds. The findings derived from this analysis along with other molecular modeling studies will be helpful in designing of the new potent antimalarial activity of clinical utility.