期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
有限元模型修正中的贝叶斯深度神经网络构架优化设计
1
作者 何宇轩 尹涛 王曦 《振动与冲击》 北大核心 2025年第6期184-190,共7页
贝叶斯神经网络(Bayesian neural network,BNN)相较于传统人工神经网络具有更强的噪声鲁棒性,在结构系统识别与健康监测领域逐渐受到关注,目前该领域的相关文献主要集中于单隐含层BNN的应用及其构架设计。具有一定深度的多隐含层构架相... 贝叶斯神经网络(Bayesian neural network,BNN)相较于传统人工神经网络具有更强的噪声鲁棒性,在结构系统识别与健康监测领域逐渐受到关注,目前该领域的相关文献主要集中于单隐含层BNN的应用及其构架设计。具有一定深度的多隐含层构架相比于单隐含层在复杂高维数据拟合上通常具有更强的泛化能力,但针对多隐含层BNN构架优化设计问题的研究目前尚未见报道。该研究旨在针对多隐含层BNN并结合有限元模型修正问题开展构架优化设计研究,发展基于证据对数的多隐含层BNN网络性能定量量度,并提出一种实现多隐含层BNN各隐含层神经元数量同步优化的高效算法,获得针对具体模型修正问题的多隐含层BNN构架优化设计方案。通过基于现场实测模态参数的某大跨度钢结构人行桥模型修正验证了所提出方法的正确性和有效性。 展开更多
关键词 结构系统识别 结构健康监测 有限元模型修正 贝叶斯深度神经网络 构架优化设计
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部