针对3种典型的基于深度相机的同步定位与地图构建(SLAM)算法,包括RGB-D SLAM V2,RTAB-Map和DVO SLAM,介绍这3种SLAM算法的理论特点。采用两个公开的SLAM数据集,包括TUM数据集和ICL-NUIM数据集,进行SLAM算法的评测,评测指标包括SLAM算法...针对3种典型的基于深度相机的同步定位与地图构建(SLAM)算法,包括RGB-D SLAM V2,RTAB-Map和DVO SLAM,介绍这3种SLAM算法的理论特点。采用两个公开的SLAM数据集,包括TUM数据集和ICL-NUIM数据集,进行SLAM算法的评测,评测指标包括SLAM算法的精确度、运行性能以及鲁棒性。评测的实验结果表明,在选择基于深度相机的SLAM算法时:如果考虑精确度和鲁棒性优先于运行性能,则选择RGB-D SLAM V2;如果考虑运行性能和鲁棒性优先于精确度,则选择DVO SLAM;如果考虑精确度和运行性能优先于鲁棒性,则选择RTAB-Map。展开更多
With consideration of the differences between concrete and steel,three solutions using genetic evolutionary structural optimization algorithm were presented to automatically develop optimal strut-and-tie model for dee...With consideration of the differences between concrete and steel,three solutions using genetic evolutionary structural optimization algorithm were presented to automatically develop optimal strut-and-tie model for deep beams.In the finite element analysis of the first method,the concrete and steel rebar are modeled by a plane element and a bar element,respectively.In the second method,the concrete and steel are assigned to two different plane elements,whereas in the third method only one kind of plane element is used with no consideration of the differences of the two materials.A simply supported beam under two point loads was presented as an example to verify the validity of the three proposed methods.The results indicates that all the three methods can generate optimal strut-and-tie models and the third algorithm has powerful capability in searching more optimal results with less computational effort.The effectiveness of the proposed algorithm III has also been demonstrated by other two examples.展开更多
文摘针对3种典型的基于深度相机的同步定位与地图构建(SLAM)算法,包括RGB-D SLAM V2,RTAB-Map和DVO SLAM,介绍这3种SLAM算法的理论特点。采用两个公开的SLAM数据集,包括TUM数据集和ICL-NUIM数据集,进行SLAM算法的评测,评测指标包括SLAM算法的精确度、运行性能以及鲁棒性。评测的实验结果表明,在选择基于深度相机的SLAM算法时:如果考虑精确度和鲁棒性优先于运行性能,则选择RGB-D SLAM V2;如果考虑运行性能和鲁棒性优先于精确度,则选择DVO SLAM;如果考虑精确度和运行性能优先于鲁棒性,则选择RTAB-Map。
基金Project(50908082) supported by the National Natural Science Foundation of ChinaProject(2009ZK3111) supported by the Science and Technology Department of Hunan Province,China
文摘With consideration of the differences between concrete and steel,three solutions using genetic evolutionary structural optimization algorithm were presented to automatically develop optimal strut-and-tie model for deep beams.In the finite element analysis of the first method,the concrete and steel rebar are modeled by a plane element and a bar element,respectively.In the second method,the concrete and steel are assigned to two different plane elements,whereas in the third method only one kind of plane element is used with no consideration of the differences of the two materials.A simply supported beam under two point loads was presented as an example to verify the validity of the three proposed methods.The results indicates that all the three methods can generate optimal strut-and-tie models and the third algorithm has powerful capability in searching more optimal results with less computational effort.The effectiveness of the proposed algorithm III has also been demonstrated by other two examples.