期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
基于改进极限梯度提升算法的配电网合环转供电影响因素评估 被引量:7
1
作者 纪焕聪 夏成军 +2 位作者 赖胜杰 王泽青 刘祎峰 《南方电网技术》 CSCD 北大核心 2023年第6期18-25,共8页
合环电流大小与母线电压幅值差、相角差、环路阻抗等因素有关,而各因素重要程度不清晰,合环电流调控缺乏针对性。为此,提出一种基于改进极限梯度提升(extreme gradient boosting,XGBoost)算法的配电网合环转供电影响因素评估方法,以得... 合环电流大小与母线电压幅值差、相角差、环路阻抗等因素有关,而各因素重要程度不清晰,合环电流调控缺乏针对性。为此,提出一种基于改进极限梯度提升(extreme gradient boosting,XGBoost)算法的配电网合环转供电影响因素评估方法,以得出各影响因素的权重大小并采取针对性措施。首先,结合实际配电网的特点,确定影响合环电流大小的特征因素集;然后,基于PSCAD/EMTDC仿真软件搭建配电网合环模型,改变参数取值以获取大量样本数据;最后,利用XGBoost算法对样本数据进行训练,得出合环电流影响因素的权重排序。研究结果表明,各因素优先级排序为:母线电压相角差>环路阻抗>综合负荷大小>母线电压幅值差>综合负荷分布,按此制定相应的合环电流调控策略,实现配电网精细化管理,对电网调度运行具有一定的借鉴价值。 展开更多
关键词 改进极限梯度提升算法 合环电流 影响因素 权重分析
在线阅读 下载PDF
采用极限梯度提升算法的电力系统电压稳定裕度预测 被引量:9
2
作者 王慧芳 张晨宇 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2020年第3期606-613,共8页
将极限梯度提升树(XGBoost)算法应用于电力系统电压稳定评估问题.根据电压稳定问题特点,提出能够反映电力系统运行状态的特征集;把电压稳定裕度绝对值作为映射目标,并介绍生成样本集的方法.在介绍XGBoost算法基本原理的基础上,研究该算... 将极限梯度提升树(XGBoost)算法应用于电力系统电压稳定评估问题.根据电压稳定问题特点,提出能够反映电力系统运行状态的特征集;把电压稳定裕度绝对值作为映射目标,并介绍生成样本集的方法.在介绍XGBoost算法基本原理的基础上,研究该算法的技术细节.在IEEE-39节点系统上进行验证,结果表明,XGBoost算法在R方值和平均绝对百分误差2项回归指标上均优于其他几类机器学习算法,且模型的计算速度最快,可以满足在线应用要求.同时,XGBoost算法具有良好的数值错误和数值缺失容错性,并可以针对预测偏差较大的样本进行数据补充,实现模型的更新,使得模型表现趋于稳定. 展开更多
关键词 电力系统 电压稳定性 机器学习 人工智能 极限梯度提升树(XGBoost)算法
在线阅读 下载PDF
驾驶性主客观综合评价方法在起步工况下的应用
3
作者 吴飞 孙现魁 王鹏程 《华南理工大学学报(自然科学版)》 北大核心 2025年第6期66-76,共11页
为提高驾驶性评价方法的准确性与可靠性,提出一种融合极限梯度提升算法、麻雀搜索算法与沙普利解释算法的主客观综合评价方法。该研究以车辆起步工况为目标,定义车辆起步工况下的9项客观评价指标,完善驾驶性起步工况的评价体系;提出以... 为提高驾驶性评价方法的准确性与可靠性,提出一种融合极限梯度提升算法、麻雀搜索算法与沙普利解释算法的主客观综合评价方法。该研究以车辆起步工况为目标,定义车辆起步工况下的9项客观评价指标,完善驾驶性起步工况的评价体系;提出以极限梯度提升算法双向映射客观评价指标值与主观评分,为避免驾驶性评价模型陷入局部最优解,采用麻雀搜索算法对极限梯度提升算法的核心超参数进行快速寻优,使得驾驶性评价模型在数据集扩充后具有自主迭代能力;最后利用沙普利解释算法对映射模型进行特征归因,量化客观评价指标对驾驶性评价的影响权重,构建兼具预测准确性、稳定性与可解释性的驾驶性综合评价模型。应用该方法,结合国内外主流驾驶性综合评价进行多次道路试验,对比分析结果表明:所提出的驾驶性评价模型的平均绝对误差、均方根误差和决定系数均优于BP神经网络、随机森林与极限学习机等主流驾驶性评价算法,映射准确性相较于其他方法明显提升,且该驾驶性综合评价方法具有一定的可解释性,对驾驶性评价中的主客观综合评价具有参考意义。 展开更多
关键词 驾驶性 起步工况 评价方法 极限梯度提升算法 沙普利解释算法
在线阅读 下载PDF
基于SPGA-XGBoost的洪水预报误差智能校正方法
4
作者 贾克 秦少玲 +1 位作者 余宇峰 徐雨妮 《人民长江》 北大核心 2025年第6期1-7,14,共8页
误差实时校正是提升洪水预报精度的重要手段。针对传统误差校正模型的校正精度及稳定性欠佳等问题,将机器学习技术引入误差序列映射函数训练过程,提出一种基于SPGA-XGBoost的洪水预报误差智能校正方法。首先以传统水文预报模型的预测值... 误差实时校正是提升洪水预报精度的重要手段。针对传统误差校正模型的校正精度及稳定性欠佳等问题,将机器学习技术引入误差序列映射函数训练过程,提出一种基于SPGA-XGBoost的洪水预报误差智能校正方法。首先以传统水文预报模型的预测值和实测值构建误差序列并作为误差校正模型的输入,引入极限梯度提升算法XGBoost构建误差校正模型,以充分挖掘误差序列非线性关系,然后提出融合粒子群优化算法和模拟退火算法的混合遗传优化算法SPGA对XGBoost模型超参数进行寻优,从而更好地挖掘误差序列的时序特征以提升误差校正的精度。长江螺山站的实例应用结果表明:用SPGA-XGBoost模型校正相较未校正前RMSE,MAE分别降低0.440 m和0.356 m,NSE提升0.016,优于STGCN模型、GBDT模型、KNN等方法。SPGA-XGBoost模型能充分挖掘误差序列的相关关系,提高水位预报精度,具有较好的适用性和应用前景。 展开更多
关键词 洪水预报误差 误差智能校正 极限梯度提升算法 混合遗传优化算法 螺山站 长江
在线阅读 下载PDF
应用XGBoost算法对森林地上生物量的机载LiDAR反演 被引量:8
5
作者 李洋 彭道黎 袁钰娜 《东北林业大学学报》 CAS CSCD 北大核心 2023年第5期106-112,129,共8页
为了探究机载LiDAR数据结合极端梯度提升(XGBoost)算法估算森林地上生物量的可行性和适用性,寻求更优的森林地上生物量的监测和估算模型的建模方法。根据125块地面样地调查数据和机载激光雷达提取的点云特征变量,结合根据皮尔森相关系... 为了探究机载LiDAR数据结合极端梯度提升(XGBoost)算法估算森林地上生物量的可行性和适用性,寻求更优的森林地上生物量的监测和估算模型的建模方法。根据125块地面样地调查数据和机载激光雷达提取的点云特征变量,结合根据皮尔森相关系数和递归特征消除筛选变量,采用多元线性回归(MLR)、随机森林(RF)、支持向量机(SVM)和极端梯度提升(XGBoost)算法,建立4种不同算法的地上生物量估测模型并进行对比分析。结果表明:在训练集中,RF模型表现最好(R_(MSE)=9.98 t·hm^(-2),R^(2)=0.93,M_(AE)=5.69 t·hm^(-2)),其次是XGBoost模型(R_(MSE)=10.80 t·hm^(-2),R^(2)=0.89,M_(AE)=7.24 t·hm^(-2));在测试集中,采用XGBoost算法建立的模型表现(R_(MSE)=12.20 t·hm^(-2),R^(2)=0.83,M_(AE)=8.30 t·hm^(-2))明显优于其他3种模型,XGBoost模型估测表现稳定且差异很小,MLR、RF和SVM模型在训练集和测试集的表现上都存在较大差异。 展开更多
关键词 极限梯度提升算法 机载激光雷达 森林地上生物量
在线阅读 下载PDF
基于静力触探与机器学习的打入桩竖向承载力预测
6
作者 莫品强 林浩东 +2 位作者 胡静 高柳 庄培芝 《同济大学学报(自然科学版)》 北大核心 2025年第2期196-205,共10页
分析了单桩承载力的主要影响因素,利用降维算法对静力触探数据进行预处理,使用树模型的重要性分析函数筛选主要特征,由贝叶斯优化算法确定超参数,提出了一种基于机器学习算法的打入桩竖向承载力预测模型。经过准度测试、蒙特卡洛模拟检... 分析了单桩承载力的主要影响因素,利用降维算法对静力触探数据进行预处理,使用树模型的重要性分析函数筛选主要特征,由贝叶斯优化算法确定超参数,提出了一种基于机器学习算法的打入桩竖向承载力预测模型。经过准度测试、蒙特卡洛模拟检验及与经验关系模型的对比,对预测模型的有效性和鲁棒性进行了评估。结果表明,支持向量机(SVM)模型、随机森林(RF)模型、极限梯度提升算法(XGBoost)模型均能较准确地预测打入桩竖向承载力,且准确性显著高于经验关系模型。根据综合分析结果,建议选择XGBoost模型用于打入桩竖向承载力的预测。 展开更多
关键词 静力触探 打入桩承载力 机器学习 降维算法 极限梯度提升算法
在线阅读 下载PDF
融合遗传算法与XGBoost的玉米百粒重相关基因挖掘 被引量:5
7
作者 杨帅 郭茂祖 +1 位作者 赵玲玲 李阳 《智能系统学报》 CSCD 北大核心 2022年第1期170-180,共11页
基于RNA-Seq的转录组测序数据特征维度较高,使用传统生信方法寻找表型相关基因需要大量计算资源,且差异分析所得候选基因范围较大,进一步筛选依赖已有的先验知识。针对这一问题,本文提出了融合遗传算法和XGBoost的转录组分析方法-GA-XGB... 基于RNA-Seq的转录组测序数据特征维度较高,使用传统生信方法寻找表型相关基因需要大量计算资源,且差异分析所得候选基因范围较大,进一步筛选依赖已有的先验知识。针对这一问题,本文提出了融合遗传算法和XGBoost的转录组分析方法-GA-XGBoost,通过融入机器学习算法缩小了后续分析的候选基因范围。在一组高质量玉米数据集上对基因-百粒重性状的关联进行了对比实验和后续分析,结果显示,相比于分别使用全体基因和差异表达基因直接训练XGBoost模型,所提方法得到的候选基因训练的XGBoost模型在玉米百粒重的预测结果上具有最小的MSE;相比于差异表达分析结果的1542个差异表达基因,GA-XGBoost方法最终将候选基因范围减小至48个,范围缩小了31倍,表明所提方法能够有效提升对转录组数据的分析能力和效率。 展开更多
关键词 遗传算法 极限梯度提升算法 机器学习 玉米 转录组分析 百粒重 基因本体 京都基因与基因组百科全书
在线阅读 下载PDF
基于概率建模的分层产液劈分方法 被引量:2
8
作者 辛国靖 张凯 +5 位作者 田丰 姚剑 姚传进 王中正 张黎明 姚军 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第2期109-117,共9页
传统产液劈分方法无法考虑层间干扰及注水井和邻井的影响,难以准确判断井下实际状况。同时,海上油田产液剖面测试成本高,常规的机器学习方法面临样本数量少的问题。基于此,提出一种基于贝叶斯神经网络和极限梯度提升算法的多层合采产液... 传统产液劈分方法无法考虑层间干扰及注水井和邻井的影响,难以准确判断井下实际状况。同时,海上油田产液剖面测试成本高,常规的机器学习方法面临样本数量少的问题。基于此,提出一种基于贝叶斯神经网络和极限梯度提升算法的多层合采产液劈分混合学习模型。概率方法可以识别预测中的不确定性,通过将神经网络与概率建模结合,进行分层产液数据分布特征挖掘,结合主控因素分析,混合学习算法可以实现小层产液量的准确预测,可以依据较少的数据获得更为稳健的模型。为验证所提方法的有效性,将其应用于实际油田某区块进行产液剖面预测。结果表明:相比KH劈分方法在计算中劈分系数固定,不会随着生产过程波动,所提出的方法可从历史数据中学习,预测精度达到87.9%,预测结果更加逼近真实单层产液量。 展开更多
关键词 多层合采 产液剖面预测 贝叶斯神经网络 极限梯度提升算法 小样本
在线阅读 下载PDF
基于考虑误差修正的非线性自适应权重组合模型的光伏发电功率预测 被引量:3
9
作者 陈德余 张玮 王辉 《济南大学学报(自然科学版)》 CAS 北大核心 2024年第2期250-256,共7页
为了提高光伏电站光伏发电功率预测精度,解决极限梯度提升模型、长短期记忆模型2种传统单一模型及传统组合模型极限梯度提升-长短期记忆模型的光伏发电功率预测结果滞后、预测效果易突变、预测误差较大、线性拟合性较差等不足,基于极限... 为了提高光伏电站光伏发电功率预测精度,解决极限梯度提升模型、长短期记忆模型2种传统单一模型及传统组合模型极限梯度提升-长短期记忆模型的光伏发电功率预测结果滞后、预测效果易突变、预测误差较大、线性拟合性较差等不足,基于极限梯度提升算法、长短期记忆算法和线性自适应权重,提出一种考虑误差修正的非线性自适应权重极限梯度提升-长短期记忆模型进行光伏发电功率预测;分别使用极限梯度提升算法和长短期记忆算法训练得到2种单一模型,将2种单一模型的初步预测值和真实值组成新的训练数据集,利用神经网络算法训练所提出的模型,对2种单一模型的初步预测值分配自适应权重系数,并根据训练时所提出模型的预测值大小分段统计预测误差的分布,预测时根据所提出模型的预测值在预测结果的基础上累加误差均值从而进行误差修正,进一步提高所提出模型的预测精度;利用Python语言分别对所提出的模型、传统组合模型和2种传统单一模型在晴天、阴天和雨天的光伏发电功率预测性能进行仿真。结果表明:与极限梯度提升-长短期记忆模型、极限梯度提升模型、长短期记忆模型相比,所提出模型的均方根误差分别减小28.57%、 39.39%、 49.79%,平均绝对误差分别减小44.25%、 53.33%、 64.8%,决定系数分别增大1.43%、 2.38%、 3.34%,所提出的模型更有效地减小了传统单一模型的光伏发电功率预测误差,优化了传统组合模型的权重系数;3种天气条件下所提出模型的光伏发电功率预测误差相对最小且稳健性最强,验证了所提出模型的有效性。 展开更多
关键词 光伏发电 功率预测 自适应权重 误差修正 极限梯度提升算法 长短期记忆算法
在线阅读 下载PDF
基于CNN和XgBoost的香蕉成熟度判别 被引量:2
10
作者 韩雪 张磊 +1 位作者 赵雅菲 王聪 《食品与机械》 CSCD 北大核心 2024年第4期127-135,178,共10页
目的:提高香蕉成熟度的判别准确率。方法:基于卷积神经网络和极限梯度提升算法建立香蕉成熟度的判别方法。先通过卷积神经网络提取香蕉图像特征,并采用全连接层网络和线性判别分析方法精简香蕉图像特征;通过贝叶斯优化算法优化极限梯度... 目的:提高香蕉成熟度的判别准确率。方法:基于卷积神经网络和极限梯度提升算法建立香蕉成熟度的判别方法。先通过卷积神经网络提取香蕉图像特征,并采用全连接层网络和线性判别分析方法精简香蕉图像特征;通过贝叶斯优化算法优化极限梯度提升算法超参数;将简化后的香蕉图像特征输入极限梯度提升算法,通过极限梯度提升算法对香蕉成熟度进行判别。结果:所提方法对香蕉成熟度的判别准确度为91.25%;与已有方法相比,所提方法对小数据量香蕉的成熟度判别准确率明显提高。结论:该方法可实现被测香蕉成熟度的准确判别,有助于仓库经理、出口商实时监测香蕉的成熟度状况。 展开更多
关键词 香蕉 成熟度判别 卷积神经网络 极限梯度提升算法 小数据量
在线阅读 下载PDF
华北落叶松林立地因子提取及立地指数遥感估测
11
作者 李金恬 范文义 《东北林业大学学报》 CAS CSCD 北大核心 2024年第4期72-81,88,共11页
根据2019年Landsat8 OLI光学遥感数据和塞罕坝机械林场地区2020年森林资源二类清查数据以及临时样地数据,编制塞罕坝机械林场华北落叶松林立地指数表,并得到华北落叶松林小班立地指数。在小班尺度上获取影像的光谱、纹理、植被指数、线... 根据2019年Landsat8 OLI光学遥感数据和塞罕坝机械林场地区2020年森林资源二类清查数据以及临时样地数据,编制塞罕坝机械林场华北落叶松林立地指数表,并得到华北落叶松林小班立地指数。在小班尺度上获取影像的光谱、纹理、植被指数、线性变换、地形等6个种类59个特征,利用极限梯度提升算法(XGBoost)提取华北落叶松林小班林分因子信息估测立地指数。结果表明:遥感-立地因子特征立地指数估测模型的精度更高,准确度为0.877376,召回率为0.894318,精确率为0.926923,F_(1)值为0.908221。因此,在立地指数估测中,将多光谱遥感特征与立地因子提取相结合具有应用潜力。 展开更多
关键词 立地指数 华北落叶松林 Landsat8 OLI 极限梯度提升算法
在线阅读 下载PDF
用于装配动作识别的肌电信号特征优化选择方法 被引量:2
12
作者 刘永 宁蕊 +2 位作者 李言 杨明顺 高新勤 《西安理工大学学报》 北大核心 2023年第4期513-520,共8页
在采用机器学习方法进行动作识别的研究中,识别的准确率很大程度上取决于输入数据的特征。针对基于表面肌电信号的作业动作识别,进行了特征分析与优化选择方法研究。在对采集的作业手臂肌电信号进行平滑处理的基础上,定义并提取了肌电... 在采用机器学习方法进行动作识别的研究中,识别的准确率很大程度上取决于输入数据的特征。针对基于表面肌电信号的作业动作识别,进行了特征分析与优化选择方法研究。在对采集的作业手臂肌电信号进行平滑处理的基础上,定义并提取了肌电信号时域、频域及时频域的15个特征量;将从8个通道肌电信号的每帧数据中计算获得的120个特征值用于手势姿态的表征,并进行了归一化处理;使用极限梯度提升(XGBoost)算法和单变量特征选择(UFS)算法分别从特征量和特征值两个角度对所得信号特征进行识别贡献度的分析。分析结果表明,两种方法均可大幅消减冗余特征,并且能有效提高最终的识别准确率,其中采用UFS算法选取的特征在识别速度和准确度上更具优势。 展开更多
关键词 动作识别 表面肌电信号 特征选择 极限梯度提升算法 单变量特征选择算法
在线阅读 下载PDF
基于多变量时间序列模型的高含水期产量预测方法 被引量:8
13
作者 刘合 李艳春 +4 位作者 杜庆龙 贾德利 王素玲 乔美霞 屈如意 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2023年第5期103-114,共12页
针对油田高含水期地质条件复杂、地层物性变化多样导致产量预测正确率低的问题,提出一种基于多变量时间序列模型即多变量长短期记忆神经网络(LSTM)的产量预测方法。在基于极限梯度提升算法(XGBoost)筛选产量主控因素的基础上,建立综合... 针对油田高含水期地质条件复杂、地层物性变化多样导致产量预测正确率低的问题,提出一种基于多变量时间序列模型即多变量长短期记忆神经网络(LSTM)的产量预测方法。在基于极限梯度提升算法(XGBoost)筛选产量主控因素的基础上,建立综合考虑产量与地质、开发等影响因素之间相关性特征,并兼顾产量自身的时序性变化特征的产量预测模型;实验选取中国某中高渗透砂岩区块油田生产历史数据进行高含水期产量预测模型的训练和测试,并与单变量长短时记忆模型以及其他全连接网络模型结果进行比较。结果表明:该方法具有较好的预测性能,新模型克服了传统全连接神经网络无法描述产量时序数据相关性,以及单变量LSTM无法表征高含水期产量变化受多因素影响的问题,有效地提高了油田高含水期产量预测的准确性。 展开更多
关键词 产量预测 高含水期 长短期记忆神经网络 极限梯度提升算法
在线阅读 下载PDF
面向5G MEC基于行为的用户异常检测方案 被引量:6
14
作者 张伟成 卫红权 +1 位作者 刘树新 王庚润 《计算机工程》 CAS CSCD 北大核心 2022年第5期27-34,共8页
5G边缘计算靠近用户侧提供服务,而边缘侧汇聚着用户的敏感信息,用户非法接入或合法用户自身的恶意行为威胁到整个边缘网络的安全。将机器学习算法应用于边缘计算架构,提出一种基于行为的用户异常检测方案。对用户行为进行建模,采用独热... 5G边缘计算靠近用户侧提供服务,而边缘侧汇聚着用户的敏感信息,用户非法接入或合法用户自身的恶意行为威胁到整个边缘网络的安全。将机器学习算法应用于边缘计算架构,提出一种基于行为的用户异常检测方案。对用户行为进行建模,采用独热编码和互信息进行数据预处理和特征选择,并利用极限梯度提升算法训练一个多分类器分类识别进入园区的用户,根据识别结果与用户身份是否一致来判定用户是否异常。在此基础上,通过孤立森林算法对授权用户历史行为数据进行模型训练,从而检测可信任用户的行为是否异常,实现对小型固定园区内未授权用户的识别以及对授权用户异常行为的检测。实验结果表明,该方案可满足边缘计算场景的时间复杂度要求,并且能够有效区分不同用户,分类准确率达到0.953,而对异常行为样本的误报率仅为0.01。 展开更多
关键词 移动边缘计算 用户异常检测 孤立森林算法 极限梯度提升算法 内部威胁检测
在线阅读 下载PDF
基于联合特征和XGBoost的活动语义识别方法 被引量:4
15
作者 郭茂祖 张彬 +1 位作者 赵玲玲 张昱 《计算机应用》 CSCD 北大核心 2020年第11期3159-3165,共7页
针对以往活动语义识别研究单纯提取时间维度上的序列特征以及周期特征、缺乏对空间信息的深度挖掘等问题,提出一种基于联合特征和极限梯度提升(XGBoost)的活动语义识别方法。首先,挖掘时间信息中的活动周期性特征和空间信息中的经纬度特... 针对以往活动语义识别研究单纯提取时间维度上的序列特征以及周期特征、缺乏对空间信息的深度挖掘等问题,提出一种基于联合特征和极限梯度提升(XGBoost)的活动语义识别方法。首先,挖掘时间信息中的活动周期性特征和空间信息中的经纬度特征;然后,使用经纬度信息通过具有噪声的基于密度的聚类(DBSCAN)算法提取空间区域热度特征,将这些特征组成特征向量来刻画用户活动语义;最后,采用集成学习方法中的XGBoost算法建立活动语义识别模型。在FourSquare的两个公共签到数据集上,基于联合特征的模型比基于时间特征的模型在识别准确率上提高了28个百分点,与上下文感知混合(CAH)方法和时空活动偏好(STAP)方法对比,所提方法的识别准确率分别提高了30个百分点和5个百分点。实验结果表明所提方法与对比方法相比在活动语义识别问题上更加准确有效。 展开更多
关键词 时空数据 活动语义识别 空间热度 具有噪声的基于密度的聚类 极限梯度提升算法
在线阅读 下载PDF
架空线路改造工程造价的组合预测方法 被引量:21
16
作者 俞敏 王愿翔 +3 位作者 闫园 杨小勇 夏晓红 文福拴 《电力科学与技术学报》 CAS 北大核心 2020年第1期24-30,共7页
架空线路改造工程造价预测是项目管控的重要环节,为提高其预测精度,提出一种组合预测方法。首先,将架空线路改造工程分解为一些子工程,分别预测各子工程造价,之后进行集成。接着,利用主成分分析法并结合专家经验,筛选出影响子工程造价... 架空线路改造工程造价预测是项目管控的重要环节,为提高其预测精度,提出一种组合预测方法。首先,将架空线路改造工程分解为一些子工程,分别预测各子工程造价,之后进行集成。接着,利用主成分分析法并结合专家经验,筛选出影响子工程造价的关键因素,之后,采用基于遗传算法优化的支持向量机和极限梯度提升算法对子工程造价分别进行预测。然后,借鉴博弈论中的Shapley值理论确定组合预测模型中的权重,得到组合预测模型。最后,用实际项目数据对所提出的组合预测方法进行验证,仿真结果表明,与采用单个预测模型相比,所构造的组合预测模型获得了更高的预测精度。 展开更多
关键词 架空线路改造工程 造价预测 组合预测 基于遗传算法的支持向量机 极限梯度提升算法 SHAPLEY值
在线阅读 下载PDF
基于OVMD-RFECV-PSO-XGBoost模型的大坝变形预测
17
作者 柯扬忠 程小龙 +2 位作者 程志良 刘陶胜 王丽丽 《三峡大学学报(自然科学版)》 2025年第5期19-25,共7页
针对大坝变形预测中存在的影响因素多、数据复杂度高和非线性问题,以及不同参数组合对预测精度的显著影响,本文提出了一种融合最优变分模态分解(OVMD)、递归特征消除及交叉验证(RFECV)、粒子群优化算法(PSO)和极限梯度提升算法(XGBoost... 针对大坝变形预测中存在的影响因素多、数据复杂度高和非线性问题,以及不同参数组合对预测精度的显著影响,本文提出了一种融合最优变分模态分解(OVMD)、递归特征消除及交叉验证(RFECV)、粒子群优化算法(PSO)和极限梯度提升算法(XGBoost)的大坝变形预测模型.首先对大坝的变形数据进行OVMD分解,将原始数据分解成K个模态分量;其次,使用RFECV为每个模态分量进行最优特征子集筛选;最后使用PSO对XGBoost的参数进行优化,构建基于OVMD-RFECV-PSO-XGBoost的大坝变形预测模型;以中国江西省某大坝2009—2015年变形监测数据为例,对大坝的垂直沉降位移进行预测,设置不同对照组进行验证.实验结果表明,OVMD-RFECV-PSO-XGBoost预测模型的EMS为0.1411mm,EMAP为5.9455%,R2为0.9348,预测精度均优于其他对照模型. 展开更多
关键词 大坝变形预测 最优变分模态分解 递归特征消除及交叉验证 粒子群优化算法 极限梯度提升算法 机器学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部