期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
采用极限梯度提升算法的电力系统电压稳定裕度预测 被引量:9
1
作者 王慧芳 张晨宇 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2020年第3期606-613,共8页
将极限梯度提升树(XGBoost)算法应用于电力系统电压稳定评估问题.根据电压稳定问题特点,提出能够反映电力系统运行状态的特征集;把电压稳定裕度绝对值作为映射目标,并介绍生成样本集的方法.在介绍XGBoost算法基本原理的基础上,研究该算... 将极限梯度提升树(XGBoost)算法应用于电力系统电压稳定评估问题.根据电压稳定问题特点,提出能够反映电力系统运行状态的特征集;把电压稳定裕度绝对值作为映射目标,并介绍生成样本集的方法.在介绍XGBoost算法基本原理的基础上,研究该算法的技术细节.在IEEE-39节点系统上进行验证,结果表明,XGBoost算法在R方值和平均绝对百分误差2项回归指标上均优于其他几类机器学习算法,且模型的计算速度最快,可以满足在线应用要求.同时,XGBoost算法具有良好的数值错误和数值缺失容错性,并可以针对预测偏差较大的样本进行数据补充,实现模型的更新,使得模型表现趋于稳定. 展开更多
关键词 电力系统 电压稳定性 机器学习 人工智能 极限梯度提升树(XGBoost)算法
在线阅读 下载PDF
基于概率建模的分层产液劈分方法 被引量:1
2
作者 辛国靖 张凯 +5 位作者 田丰 姚剑 姚传进 王中正 张黎明 姚军 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第2期109-117,共9页
传统产液劈分方法无法考虑层间干扰及注水井和邻井的影响,难以准确判断井下实际状况。同时,海上油田产液剖面测试成本高,常规的机器学习方法面临样本数量少的问题。基于此,提出一种基于贝叶斯神经网络和极限梯度提升算法的多层合采产液... 传统产液劈分方法无法考虑层间干扰及注水井和邻井的影响,难以准确判断井下实际状况。同时,海上油田产液剖面测试成本高,常规的机器学习方法面临样本数量少的问题。基于此,提出一种基于贝叶斯神经网络和极限梯度提升算法的多层合采产液劈分混合学习模型。概率方法可以识别预测中的不确定性,通过将神经网络与概率建模结合,进行分层产液数据分布特征挖掘,结合主控因素分析,混合学习算法可以实现小层产液量的准确预测,可以依据较少的数据获得更为稳健的模型。为验证所提方法的有效性,将其应用于实际油田某区块进行产液剖面预测。结果表明:相比KH劈分方法在计算中劈分系数固定,不会随着生产过程波动,所提出的方法可从历史数据中学习,预测精度达到87.9%,预测结果更加逼近真实单层产液量。 展开更多
关键词 多层合采 产液剖面预测 贝叶斯神经网络 极限梯度提升算法 小样本
在线阅读 下载PDF
基于CNN和XgBoost的香蕉成熟度判别 被引量:1
3
作者 韩雪 张磊 +1 位作者 赵雅菲 王聪 《食品与机械》 CSCD 北大核心 2024年第4期127-135,178,共10页
目的:提高香蕉成熟度的判别准确率。方法:基于卷积神经网络和极限梯度提升算法建立香蕉成熟度的判别方法。先通过卷积神经网络提取香蕉图像特征,并采用全连接层网络和线性判别分析方法精简香蕉图像特征;通过贝叶斯优化算法优化极限梯度... 目的:提高香蕉成熟度的判别准确率。方法:基于卷积神经网络和极限梯度提升算法建立香蕉成熟度的判别方法。先通过卷积神经网络提取香蕉图像特征,并采用全连接层网络和线性判别分析方法精简香蕉图像特征;通过贝叶斯优化算法优化极限梯度提升算法超参数;将简化后的香蕉图像特征输入极限梯度提升算法,通过极限梯度提升算法对香蕉成熟度进行判别。结果:所提方法对香蕉成熟度的判别准确度为91.25%;与已有方法相比,所提方法对小数据量香蕉的成熟度判别准确率明显提高。结论:该方法可实现被测香蕉成熟度的准确判别,有助于仓库经理、出口商实时监测香蕉的成熟度状况。 展开更多
关键词 香蕉 成熟度判别 卷积神经网络 极限梯度提升算法 小数据量
在线阅读 下载PDF
基于Elman神经网络算法的用户短期用电量预测 被引量:1
4
作者 余红平 《通信电源技术》 2023年第5期38-41,共4页
针对用户短期用电量预测能力低下的问题,提出了神经网络算法模型,实现用电预测系统的设计。用电预测评定的功能设计,通过完全集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)算法和经... 针对用户短期用电量预测能力低下的问题,提出了神经网络算法模型,实现用电预测系统的设计。用电预测评定的功能设计,通过完全集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)算法和经验模态分解(Empirical Mode Decomposition,EMD)信号对用电预测数据进行评估和计算,进而实现对用电预测终端、电网负荷的评定。采用双层极限梯度提升(Extreme Gradient Boosting,XGBoost)算法构建弱学习器,提取用电预测数据的特征变量,调用权重和增益完成特征选择,建立好预测模型后进行负荷预测。实验表明,在进行用电预测的精确度测试时,用电预测的准确度可达97%。 展开更多
关键词 用电预测 神经网络 负荷预测 极限梯度提升(XGBoost)算法 弱学习器
在线阅读 下载PDF
基于回归学习算法的高铁站媒体资源价值评估模型研究与应用
5
作者 许娜 单杏花 +2 位作者 付睿 吴刚 牛慧琳 《铁路计算机应用》 2022年第12期20-25,共6页
随着高速铁路(简称:高铁)车站媒体广告市场的兴盛,亟需一种科学、系统、全面的高铁站媒体资源价值评估体系指导媒体资源经营。文章研究价值评估指标体系的多维度数据与高铁站媒体资源价值的关系,借助特征工程,抽取出与目标强相关的核心... 随着高速铁路(简称:高铁)车站媒体广告市场的兴盛,亟需一种科学、系统、全面的高铁站媒体资源价值评估体系指导媒体资源经营。文章研究价值评估指标体系的多维度数据与高铁站媒体资源价值的关系,借助特征工程,抽取出与目标强相关的核心数据特征。运用多种回归学习算法,筛选出评价指标最优的极限梯度提升(XGBoost)算法,构建高铁站媒体资源价值评估模型,通过模型优化,提升了拟合优度值,达到目标值0.8。应用证明,该模型偏离度不超过15%,可为高铁站媒体资源日常经营定价决策提供参考。 展开更多
关键词 价值评估 指标体系 极限梯度提升(XGBoost)算法 媒体资源 高铁车站
在线阅读 下载PDF
基于天气二次分类的地表太阳辐射预测方法
6
作者 杨家豪 张莲 +2 位作者 梁法政 杨玉洁 张未 《分布式能源》 2024年第1期54-63,共10页
为提高地表太阳辐射在复杂天气情况下的预报精确度并减小预报的时间成本,结合广州市白云区的历史气象数据,提出了一种以中国气象局的天气划分标准对历史天气进行分类的方法,并在各天气的子模型下使用支持向量回归(support vector regres... 为提高地表太阳辐射在复杂天气情况下的预报精确度并减小预报的时间成本,结合广州市白云区的历史气象数据,提出了一种以中国气象局的天气划分标准对历史天气进行分类的方法,并在各天气的子模型下使用支持向量回归(support vector regression, SVR)对地表辐照度进行预报。由于天气类型较多,因此对各子模型利用极限梯度提升(extreme gradient boosting, XGBoost)算法进行特征分析,并利用Mann-Whitney检验,合并了特征重要性类似的序列,实现了天气的二次分类,降低了模型的复杂度。结果显示,本文模型在连续12个月的预报中,相关系数、准确率和合格率均超过了评判指标的要求,具有较高的预测精度。且预报总计用时10.633 h,相比其余模型的13~34 h,预报速度更快,迎合了光伏电站中对太阳辐射预报的及时性的需求。 展开更多
关键词 地表太阳辐射 天气分类 支持向量回归(SVR) 极限梯度提升算法(XGBoost) 预测
在线阅读 下载PDF
基于多变量时间序列模型的高含水期产量预测方法 被引量:6
7
作者 刘合 李艳春 +4 位作者 杜庆龙 贾德利 王素玲 乔美霞 屈如意 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2023年第5期103-114,共12页
针对油田高含水期地质条件复杂、地层物性变化多样导致产量预测正确率低的问题,提出一种基于多变量时间序列模型即多变量长短期记忆神经网络(LSTM)的产量预测方法。在基于极限梯度提升算法(XGBoost)筛选产量主控因素的基础上,建立综合... 针对油田高含水期地质条件复杂、地层物性变化多样导致产量预测正确率低的问题,提出一种基于多变量时间序列模型即多变量长短期记忆神经网络(LSTM)的产量预测方法。在基于极限梯度提升算法(XGBoost)筛选产量主控因素的基础上,建立综合考虑产量与地质、开发等影响因素之间相关性特征,并兼顾产量自身的时序性变化特征的产量预测模型;实验选取中国某中高渗透砂岩区块油田生产历史数据进行高含水期产量预测模型的训练和测试,并与单变量长短时记忆模型以及其他全连接网络模型结果进行比较。结果表明:该方法具有较好的预测性能,新模型克服了传统全连接神经网络无法描述产量时序数据相关性,以及单变量LSTM无法表征高含水期产量变化受多因素影响的问题,有效地提高了油田高含水期产量预测的准确性。 展开更多
关键词 产量预测 高含水期 长短期记忆神经网络 极限梯度提升算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部