期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
同步压缩小波与极限梯度提升树融合的柴油机失火故障诊断 被引量:11
1
作者 李卫星 陶建峰 +1 位作者 覃程锦 刘成良 《西安交通大学学报》 EI CAS CSCD 北大核心 2019年第2期47-54,169,共9页
针对柴油机失火故障诊断特征提取分辨率较低和分类评估容易出现过拟合的问题,提出了一种同步压缩小波变换和极限梯度提升树融合的诊断方法。在不同转速下进行柴油机失火性能试验,采集缸盖振动信号,对信号利用时域统计、同步压缩小波提... 针对柴油机失火故障诊断特征提取分辨率较低和分类评估容易出现过拟合的问题,提出了一种同步压缩小波变换和极限梯度提升树融合的诊断方法。在不同转速下进行柴油机失火性能试验,采集缸盖振动信号,对信号利用时域统计、同步压缩小波提取特征,再采用局部线性嵌入方法进行特征降维,最后利用极限梯度提升树进行失火评估分类。不同工况与评估方法下的对比实验结果表明,所提方法的分类准确率最高可达99.828%,相比小波包特征提取的评估方法提升至少10%。在低模型复杂度下,所提方法具有最小的模型预测均方根误差,证明了方法的鲁棒性和抑制模型过拟合的能力。 展开更多
关键词 失火故障诊断 同步压缩小波变换 极限梯度提升 局部线性嵌入
在线阅读 下载PDF
采用极限梯度提升算法的电力系统电压稳定裕度预测 被引量:9
2
作者 王慧芳 张晨宇 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2020年第3期606-613,共8页
将极限梯度提升树(XGBoost)算法应用于电力系统电压稳定评估问题.根据电压稳定问题特点,提出能够反映电力系统运行状态的特征集;把电压稳定裕度绝对值作为映射目标,并介绍生成样本集的方法.在介绍XGBoost算法基本原理的基础上,研究该算... 将极限梯度提升树(XGBoost)算法应用于电力系统电压稳定评估问题.根据电压稳定问题特点,提出能够反映电力系统运行状态的特征集;把电压稳定裕度绝对值作为映射目标,并介绍生成样本集的方法.在介绍XGBoost算法基本原理的基础上,研究该算法的技术细节.在IEEE-39节点系统上进行验证,结果表明,XGBoost算法在R方值和平均绝对百分误差2项回归指标上均优于其他几类机器学习算法,且模型的计算速度最快,可以满足在线应用要求.同时,XGBoost算法具有良好的数值错误和数值缺失容错性,并可以针对预测偏差较大的样本进行数据补充,实现模型的更新,使得模型表现趋于稳定. 展开更多
关键词 电力系统 电压稳定性 机器学习 人工智能 极限梯度提升(xgboost)算法
在线阅读 下载PDF
基于PCA-GA-XGBoost模型的吉林省水资源 承载力评价 被引量:2
3
作者 庞博文 李治军 《人民珠江》 2024年第4期98-106,共9页
为了提高水资源承载力评价的效率和准确性,提出了一种基于主成分分析(PCA)、遗传算法(GA)和极限梯度提升树(XGBoost)的指标评价模型。定义了以水资源、社会经济、生态环境为子系统的14项评价指标;采用主成分分析法对评价指标进行降维处... 为了提高水资源承载力评价的效率和准确性,提出了一种基于主成分分析(PCA)、遗传算法(GA)和极限梯度提升树(XGBoost)的指标评价模型。定义了以水资源、社会经济、生态环境为子系统的14项评价指标;采用主成分分析法对评价指标进行降维处理;基于梯度提升决策树对吉林省2011—2021年的水资源承载力进行评价分析,并利用遗传算法对极限梯度提升树中4个参数进行优化。结果表明:经主成分分析简化评价指标后,PCA-GA-XGBoost模型的相关系数等指标均优于GA-BP、GA-SVM、GA-XGBoost和XGBoost;2011—2021年吉林省水资源承载力位于0.192~0.724,为先上升后下降再上升趋势,承载力状况逐年改善;利用模型内置的特征值重要度排序功能,识别得出重要度最大的指标为每公顷化肥施用量(0.5307),是影响吉林省水资源承载力的关键因素。 展开更多
关键词 主成分分析 遗传算法 极限梯度提升 水资源承载力 吉林省
在线阅读 下载PDF
融合SHAP和TSO-XGBoost模型的水路货运量预测
4
作者 温泉 余玉欢 +1 位作者 庄尚德 牟军敏 《水利水运工程学报》 CSCD 北大核心 2024年第6期86-96,共11页
水路货运量需求受诸多因素影响,长江干线中游“645”工程实施后,航道通航条件得到了明显改善,为了更好分析工程实施后货运量变化趋势,提出一种新的水路货运量预测模型。首先,采用二次插值法和KNN反距离权重插值法解决高维面板数据中时... 水路货运量需求受诸多因素影响,长江干线中游“645”工程实施后,航道通航条件得到了明显改善,为了更好分析工程实施后货运量变化趋势,提出一种新的水路货运量预测模型。首先,采用二次插值法和KNN反距离权重插值法解决高维面板数据中时间粒度不统一与缺失问题,利用层次聚类和SHAP值的可解释性综合筛选关键影响因素特征序列,降低预测模型输入数据的维度和规模,引入Halton低差异序列和准反射学习策略(QRBL)大幅提升金枪鱼群优化算法(TSO)的寻优效能,增强TSO算法对极限梯度提升(XGBoost)模型中决策树数量、决策树的深度、学习速率等决定模型拟合能力的超参组合寻优效果。结果表明,新模型预测精度显著优于对比模型,可更好地适用于多特征影响因素下的水路货运量预测研究。 展开更多
关键词 金枪鱼群优化算法(TSO) 极限梯度提升(xgboost) 水路货运量
在线阅读 下载PDF
基于IDBO-XGBoost的铁路隧道岩爆烈度等级预测方法与应用
5
作者 李时宜 《铁道建筑》 北大核心 2024年第11期118-123,共6页
为减少铁路隧道施工过程中岩爆事故的发生,在施工前做好岩爆烈度等级预测,提出了改进蜣螂优化算法(Improved Dung Beetle Optimizer,IDBO)与极限梯度提升树(Extreme Gradient Boosting,XGBoost)相结合的铁路隧道岩爆烈度等级预测模型。... 为减少铁路隧道施工过程中岩爆事故的发生,在施工前做好岩爆烈度等级预测,提出了改进蜣螂优化算法(Improved Dung Beetle Optimizer,IDBO)与极限梯度提升树(Extreme Gradient Boosting,XGBoost)相结合的铁路隧道岩爆烈度等级预测模型。首先,依据岩爆成因及特点,综合选取围岩切向应力(σθ)等四个特征因素作为预测岩爆烈度等级的主控因素,建立岩爆烈度等级预测数据集;其次,引入Sine混沌映射、黄金正弦策略(Golden Sine Strategy,SA)、自适应高斯-柯西变异扰动策略以及贪婪选择策略并进行改进,以提高其全局搜索能力和稳定性;而后利用IDBO优化XGBoost中的超参数提升其预测精度,同时避免XGBoost出现“过拟合”现象;最后,将其结果与DBO-XGBoost、粒子群算法优化反向传播神经网络模型(Particle Swarm-Optimization Back Propagation Neural Network,PSO-BPNN)和遗传算法优化支持向量机模型(Genetic Algorithm Support-Vector Machine,GA-SVM)的结果进行对比。结果表明:IDBO-XGBoost模型准确率最高,相较于其他三种模型在测试样本中的准确率分别提高了8.69%、17.39%、8.69%;IDBO-XGBoost模型在处理岩爆问题上能更好地捕捉岩爆等级与指标之间的联系,可为实际工程的岩爆预测提供科学依据。 展开更多
关键词 铁路隧道 岩爆烈度 预测 蜣螂优化算法(DBO) 极限梯度提升(xgboost)
在线阅读 下载PDF
基于CSI-XGBoost的高精度WiFi室内定位算法 被引量:12
6
作者 张玄黎 修春娣 +1 位作者 王延昭 杨东凯 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2018年第12期2536-2544,共9页
考虑到室内环境的复杂性和多径效应对Wi Fi指纹定位性能的影响从Intel5300无线网卡中提取信道状态信息(CSI),利用修正后的CSI幅值和相位信息作为指纹特征,使用极限梯度提升(XGBoost)算法构建高精度指纹库,实现分米级的高精度室内定位。... 考虑到室内环境的复杂性和多径效应对Wi Fi指纹定位性能的影响从Intel5300无线网卡中提取信道状态信息(CSI),利用修正后的CSI幅值和相位信息作为指纹特征,使用极限梯度提升(XGBoost)算法构建高精度指纹库,实现分米级的高精度室内定位。进一步通过实测数据分析了采样间隔、室内视距(LOS)和非视距(NLOS)环境、缺失值和数据维度等因素对所提算法定位性能的影响。实际室内环境下的实验结果表明,本文算法受NLOS影响较小,对室内复杂环境有很强的鲁棒性;此外,该算法能够很好地处理高维稀疏数据,解决CSI指纹特征的"误匹配"问题,且对缺失数据不敏感,定位准确度优于90%。 展开更多
关键词 室内定位 信道状态信息(CSI) 指纹匹配 极限梯度提升(xgboost) 相位延拓
在线阅读 下载PDF
基于XGBoost-SHAP的钢管混凝土柱轴向承载力预测模型 被引量:6
7
作者 陈曦泽 贾俊峰 +2 位作者 白玉磊 郭彤 杜修力 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2023年第6期1061-1070,共10页
为了可靠、准确地预测钢管混凝土(CFST)柱的轴向承载力,建立和解释集成机器学习的CFST柱轴向承载力预测模型.使用马氏距离评估CFST柱数据库质量,通过极限梯度提升(XGBoost)算法建立CFST柱轴向承载力预测模型,使用K折交叉验证(K-Fold CV... 为了可靠、准确地预测钢管混凝土(CFST)柱的轴向承载力,建立和解释集成机器学习的CFST柱轴向承载力预测模型.使用马氏距离评估CFST柱数据库质量,通过极限梯度提升(XGBoost)算法建立CFST柱轴向承载力预测模型,使用K折交叉验证(K-Fold CV)和树结构概率密度估计(TPE)算法寻找模型的最优超参数组合.采用不同评价指标将优化后XGBoost模型的预测值与已有方法和未优化XGBoost模型的计算值比较.使用SHAP方法给出XGBoost模型预测结果的整体和局部的解释.结果表明,经过超参数调整优化的XGBoost模型的性能超越了相关规范和经验公式的性能,且SHAP方法能够有效地解释XGBoost模型的输出. 展开更多
关键词 钢管混凝土(CFST)柱 轴向承载力 极限梯度提升(xgboost) 超参数优化 SHAP 可解释性
在线阅读 下载PDF
基于XGBoost扩展金融因子的风电功率预测方法 被引量:8
8
作者 王永生 关世杰 +3 位作者 刘利民 高静 许志伟 刘广文 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2023年第5期1038-1049,共12页
现有风电功率预测模型的主要输入特征包括气象数据和功率数据,高精度气象数据获取困难、数据间潜在关系难以表示、预测模型收敛缓慢,提出基于极端梯度提升回归树算法(XGBoost)扩展金融因子的超短期风电功率预测新方法,以及基于风电时序... 现有风电功率预测模型的主要输入特征包括气象数据和功率数据,高精度气象数据获取困难、数据间潜在关系难以表示、预测模型收敛缓慢,提出基于极端梯度提升回归树算法(XGBoost)扩展金融因子的超短期风电功率预测新方法,以及基于风电时序数据衍生金融因子的预测模型.采用具有较高预测准确率与较快训练速度的XGBoost算法进行预测,使得预测模型快速收敛.在中国内蒙古某风电场的风电功率数据集与德国Tennet公司风电功率数据集上进行实验验证.实验结果表明,以R2score为例,所提方法与基准方法相比提升约14.71%.所提方法中的建模与预测合计时间不超过500 ms. 展开更多
关键词 风力发电 超短期风电功率预测 梯度提升回归 xgboost 金融因子
在线阅读 下载PDF
基于双重虚警控制XGBoost的海面小目标检测 被引量:1
9
作者 施赛楠 姜丽 +1 位作者 李东宸 吴旭姿 《雷达科学与技术》 北大核心 2023年第3期314-323,328,共11页
为了提升雷达对海面小目标的探测能力,本文提出一种基于双重虚警控制的极限梯度提升(eXtreme Gradient Boosting,XGBoost)的目标检测方法,解决高维特征空间中分类器设计难的问题。首先,从时域、频域、时频域中挖掘了海杂波和含目标回波... 为了提升雷达对海面小目标的探测能力,本文提出一种基于双重虚警控制的极限梯度提升(eXtreme Gradient Boosting,XGBoost)的目标检测方法,解决高维特征空间中分类器设计难的问题。首先,从时域、频域、时频域中挖掘了海杂波和含目标回波的精细化差异,并将这些差异凝聚为7个特性,进而构建高维特征空间。然后,发展了一种双重虚警控制的两分类器。在第一重中,重新定义XGBoost的损失函数,通过迭代调整两类错误率的惩罚因子,实现结构层面上的粗虚警控制。在第二重中,将分类概率作为统计量,实现参数层面上的精虚警控制。最后,经实测数据验证,所提出的检测器能精准控制虚警且具备稳健的探测能力。 展开更多
关键词 海杂波 目标检测 特征提取 虚警控制 极限梯度提升
在线阅读 下载PDF
基于机器学习对铜和锌在土壤中的老化预测和关键因子识别
10
作者 夏菲洋 和长城 +3 位作者 陆晓松 王玉军 杨敏 范婷婷 《农业环境科学学报》 CAS CSCD 北大核心 2024年第11期2534-2544,共11页
为探究铜(Cu)和锌(Zn)在不同类型土壤中的老化过程及其主要影响因素,本研究开展了为期90 d的培养实验,向12种不同类型的土壤外源添加Cu和Zn。基于传统动力学模型、逐步线性回归和机器学习模型,构建了土壤中Cu和Zn有效态变化的预测模型... 为探究铜(Cu)和锌(Zn)在不同类型土壤中的老化过程及其主要影响因素,本研究开展了为期90 d的培养实验,向12种不同类型的土壤外源添加Cu和Zn。基于传统动力学模型、逐步线性回归和机器学习模型,构建了土壤中Cu和Zn有效态变化的预测模型。此外,基于沙普利可加性模型解释方法(Shapley Additive Explanations,SHAP),分析了影响Cu和Zn有效态含量的关键土壤因子的作用。结果表明,Cu和Zn有效态含量在培养前30 d内迅速下降,随后速率减缓,且pH对老化速率影响显著,在碱性土壤中下降更明显。动力学分析显示Cu的老化过程主要受微孔扩散控制,而Zn的老化机制较为复杂,不完全依赖扩散作用。多变量逐步线性回归分析表明,土壤电导率和粒径组成对金属有效态变化有显著影响。此外,本文比较了随机森林、支持向量回归、极限梯度提升和符号回归4种机器学习模型对Cu和Zn有效态含量的预测能力,发现极限梯度提升模型的预测精度最高。通过SHAP分析发现,铁氧化物和有机质含量分别是影响Cu和Zn有效态的最关键因素。pH对Cu和Zn有效态含量的影响存在显著差异,Cu的有效态含量预测中铁氧化物与pH值之间呈现出显著的交互作用。总体而言,本文通过结合动力学模型、逐步线性回归分析与机器学习方法,揭示了Cu和Zn在土壤中老化的主要驱动因素及其相互作用。 展开更多
关键词 生物有效性预测 极限梯度提升(xgboost) 动力学过程 老化
在线阅读 下载PDF
基于天气二次分类的地表太阳辐射预测方法
11
作者 杨家豪 张莲 +2 位作者 梁法政 杨玉洁 张未 《分布式能源》 2024年第1期54-63,共10页
为提高地表太阳辐射在复杂天气情况下的预报精确度并减小预报的时间成本,结合广州市白云区的历史气象数据,提出了一种以中国气象局的天气划分标准对历史天气进行分类的方法,并在各天气的子模型下使用支持向量回归(support vector regres... 为提高地表太阳辐射在复杂天气情况下的预报精确度并减小预报的时间成本,结合广州市白云区的历史气象数据,提出了一种以中国气象局的天气划分标准对历史天气进行分类的方法,并在各天气的子模型下使用支持向量回归(support vector regression, SVR)对地表辐照度进行预报。由于天气类型较多,因此对各子模型利用极限梯度提升(extreme gradient boosting, XGBoost)算法进行特征分析,并利用Mann-Whitney检验,合并了特征重要性类似的序列,实现了天气的二次分类,降低了模型的复杂度。结果显示,本文模型在连续12个月的预报中,相关系数、准确率和合格率均超过了评判指标的要求,具有较高的预测精度。且预报总计用时10.633 h,相比其余模型的13~34 h,预报速度更快,迎合了光伏电站中对太阳辐射预报的及时性的需求。 展开更多
关键词 地表太阳辐射 天气分类 支持向量回归(SVR) 极限梯度提升算法(xgboost) 预测
在线阅读 下载PDF
融合空间偏好和语义的个体活动识别方法 被引量:1
12
作者 郭茂祖 陈加栋 +2 位作者 张彬 赵玲玲 李阳 《国防科技大学学报》 EI CAS CSCD 北大核心 2022年第3期57-66,共10页
个体活动识别对用户画像、个性化推荐、异常行为检测、群体行为分析和基于活动的资源配置优化具有重要价值。提出了一种基于稀疏的社交媒体签到数据的个体活动语义识别方法,从签到数据中提取活动行为的时间周期性和趋势性特征,并采用空... 个体活动识别对用户画像、个性化推荐、异常行为检测、群体行为分析和基于活动的资源配置优化具有重要价值。提出了一种基于稀疏的社交媒体签到数据的个体活动语义识别方法,从签到数据中提取活动行为的时间周期性和趋势性特征,并采用空间偏好量化算法,从个体与群体活动的空间关联中提取群体和个体的空间访问偏好,使用自然语言嵌入工具BERT模型提取访问兴趣点的语义。时间特征、空间偏好特征和访问兴趣点名称语义特征共同构成表征群体、个体偏好的时空联合特征,通过极限梯度提升分类器对其进行分类,得到活动语义识别结果。在Foursquare数据集上的对比实验和消融实验中验证了所提活动语义识别模型可以有效提升活动语义识别的准确性。 展开更多
关键词 活动语义识别 空间偏好 兴趣点语义 极限梯度提升 BERT
在线阅读 下载PDF
动态因素下时序称重模型的建立 被引量:1
13
作者 史柏迪 庄曙东 +2 位作者 陈威 陈天翔 朱楠楠 《中国测试》 CAS 北大核心 2021年第7期135-141,共7页
物流秤在动态测量过程中,各类时序干扰信号极易对压力传感器测量精度造成影响。基于正交试验法获取物流秤在不同带速、载重及采样频率下台面的压力及秤体三轴加速度信号,以此作为样本集,基于五折交叉验证原则依次建立岭回归、Xgboost以... 物流秤在动态测量过程中,各类时序干扰信号极易对压力传感器测量精度造成影响。基于正交试验法获取物流秤在不同带速、载重及采样频率下台面的压力及秤体三轴加速度信号,以此作为样本集,基于五折交叉验证原则依次建立岭回归、Xgboost以及改进的LSTM测量补偿模型。结果表明Ridge模型具有最低的算法复杂度,且较传统线性回归模型提升明显,补偿平均损失为0.317 kg;Xgboost模型平均损失为0.219 kg且基于F检验分析误差成分;此外提出一种改进的LSTM神经网络模型,通过在原有结构基础上堆叠全连接层,将采样信号作为时间序列变量输入模型,最终测试结果表明虽模型训练时间与空间复杂度较大,但补偿测量准确度最佳损失低至0.142 kg,且对采样频率不敏感具有最好的鲁棒性。 展开更多
关键词 动态测量系统 极限梯度提升 长短期记忆神经网络 岭回归 补偿系统
在线阅读 下载PDF
基于电流谐波特征的矿用电缆劣化监测与故障诊断 被引量:4
14
作者 卢润戈 徐涛 +2 位作者 周卓蓓 李茂 黄潮灿 《工矿自动化》 CSCD 北大核心 2023年第10期35-42,共8页
矿用电缆受煤矿恶劣环境影响,容易发生绝缘劣化、护套受损等情况,传统的矿用电缆检测多采用低压脉冲法、局放法等离线诊断方式,操作复杂,准确度低,难以满足现代煤矿生产需求。而现有基于谐波的电缆故障诊断方法存在检测装置笨重、检测... 矿用电缆受煤矿恶劣环境影响,容易发生绝缘劣化、护套受损等情况,传统的矿用电缆检测多采用低压脉冲法、局放法等离线诊断方式,操作复杂,准确度低,难以满足现代煤矿生产需求。而现有基于谐波的电缆故障诊断方法存在检测装置笨重、检测精确低、难以在煤矿应用等问题。针对上述问题,提出一种基于电流谐波特征的矿用电缆劣化监测与故障诊断方法。提取电缆中高次谐波含量信息作为故障特征向量,对特征向量进行归一化处理后导入极限梯度提升树(XGBoost)模型,结合已知电缆故障劣化度数据,形成训练样本集,训练XGBoost模型,最后通过构建的XGBoost模型对电缆劣化度进行实时监测和故障诊断。仿真结果表明:针对电缆不同部位提取的高次谐波向量的相对能量有明显不同,表明提取的高次谐波向量可表征电缆不同部位的运行状态;XGBoost模型的拟合优度参数R2高达0.93,且误差较小。案例分析结果验证了基于电流谐波特征的矿用电缆劣化监测与故障诊断方法可对矿用电缆运行状态及劣化故障进行实时、准确的监测和诊断。 展开更多
关键词 矿用电缆 故障诊断 劣化监测 电流谐波特征 极限梯度提升 xgboost模型
在线阅读 下载PDF
基于Elman神经网络算法的用户短期用电量预测 被引量:1
15
作者 余红平 《通信电源技术》 2023年第5期38-41,共4页
针对用户短期用电量预测能力低下的问题,提出了神经网络算法模型,实现用电预测系统的设计。用电预测评定的功能设计,通过完全集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)算法和经... 针对用户短期用电量预测能力低下的问题,提出了神经网络算法模型,实现用电预测系统的设计。用电预测评定的功能设计,通过完全集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)算法和经验模态分解(Empirical Mode Decomposition,EMD)信号对用电预测数据进行评估和计算,进而实现对用电预测终端、电网负荷的评定。采用双层极限梯度提升(Extreme Gradient Boosting,XGBoost)算法构建弱学习器,提取用电预测数据的特征变量,调用权重和增益完成特征选择,建立好预测模型后进行负荷预测。实验表明,在进行用电预测的精确度测试时,用电预测的准确度可达97%。 展开更多
关键词 用电预测 神经网络 负荷预测 极限梯度提升(xgboost)算法 弱学习器
在线阅读 下载PDF
基于回归学习算法的高铁站媒体资源价值评估模型研究与应用
16
作者 许娜 单杏花 +2 位作者 付睿 吴刚 牛慧琳 《铁路计算机应用》 2022年第12期20-25,共6页
随着高速铁路(简称:高铁)车站媒体广告市场的兴盛,亟需一种科学、系统、全面的高铁站媒体资源价值评估体系指导媒体资源经营。文章研究价值评估指标体系的多维度数据与高铁站媒体资源价值的关系,借助特征工程,抽取出与目标强相关的核心... 随着高速铁路(简称:高铁)车站媒体广告市场的兴盛,亟需一种科学、系统、全面的高铁站媒体资源价值评估体系指导媒体资源经营。文章研究价值评估指标体系的多维度数据与高铁站媒体资源价值的关系,借助特征工程,抽取出与目标强相关的核心数据特征。运用多种回归学习算法,筛选出评价指标最优的极限梯度提升(XGBoost)算法,构建高铁站媒体资源价值评估模型,通过模型优化,提升了拟合优度值,达到目标值0.8。应用证明,该模型偏离度不超过15%,可为高铁站媒体资源日常经营定价决策提供参考。 展开更多
关键词 价值评估 指标体系 极限梯度提升(xgboost)算法 媒体资源 高铁车站
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部