期刊文献+
共找到48篇文章
< 1 2 3 >
每页显示 20 50 100
基于小波包分解和极限梯度提升的车网耦合系统电气异常辨识
1
作者 周福林 杨涛 +2 位作者 刘飞帆 田腾宇 熊进飞 《铁道学报》 EI CAS CSCD 北大核心 2024年第12期58-68,共11页
及时准确识别电气化铁路车网耦合系统中的电气异常是保障列车安全稳定运行的关键。车网耦合系统拓扑结构动态变化,电气异常类型复杂多样,该系统不仅包含单一类型的电气异常,还存在复合类型的电气异常。目前,针对车网耦合系统电气异常的... 及时准确识别电气化铁路车网耦合系统中的电气异常是保障列车安全稳定运行的关键。车网耦合系统拓扑结构动态变化,电气异常类型复杂多样,该系统不仅包含单一类型的电气异常,还存在复合类型的电气异常。目前,针对车网耦合系统电气异常的识别方法较少,尤其是复合类型异常。提出一种基于小波包分解(wavelet packet decomposition,WPD)与极限梯度提升(extreme gradient boosting,XGBoost)的车网耦合系统电气异常识别方法,对特定采样频率下的电气异常进行小波包分解,根据信号在不同频带上的特征,建立相应频率范围内的特征向量,通过多次不同程度的重采样,建立宽频域上的特征向量,实现宽频域的特征提取,利用XGBoost集成学习算法对电气异常进行分类。该方法不仅可以识别单一类型的电气异常,而且可以实现对复合类型电气异常的识别。实际工程案例结果表明,本文方法对电气异常的识别准确率达到93%以上,同时具有良好的噪声鲁棒性和实时性,可以满足实际工程需求。 展开更多
关键词 电气化铁路 车网耦合系统 电气异常 小波包分解 极限梯度提升
在线阅读 下载PDF
采用极限梯度提升算法的电力系统电压稳定裕度预测 被引量:9
2
作者 王慧芳 张晨宇 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2020年第3期606-613,共8页
将极限梯度提升树(XGBoost)算法应用于电力系统电压稳定评估问题.根据电压稳定问题特点,提出能够反映电力系统运行状态的特征集;把电压稳定裕度绝对值作为映射目标,并介绍生成样本集的方法.在介绍XGBoost算法基本原理的基础上,研究该算... 将极限梯度提升树(XGBoost)算法应用于电力系统电压稳定评估问题.根据电压稳定问题特点,提出能够反映电力系统运行状态的特征集;把电压稳定裕度绝对值作为映射目标,并介绍生成样本集的方法.在介绍XGBoost算法基本原理的基础上,研究该算法的技术细节.在IEEE-39节点系统上进行验证,结果表明,XGBoost算法在R方值和平均绝对百分误差2项回归指标上均优于其他几类机器学习算法,且模型的计算速度最快,可以满足在线应用要求.同时,XGBoost算法具有良好的数值错误和数值缺失容错性,并可以针对预测偏差较大的样本进行数据补充,实现模型的更新,使得模型表现趋于稳定. 展开更多
关键词 电力系统 电压稳定性 机器学习 人工智能 极限梯度提升树(xgboost)算法
在线阅读 下载PDF
贝叶斯极限梯度提升机结合粒子群算法的电阻点焊参数预测 被引量:5
3
作者 邓新国 游纬豪 徐海威 《电子与信息学报》 EI CSCD 北大核心 2021年第4期1042-1049,共8页
电阻点焊是多种因素交互作用的复杂过程。该过程的复杂性加上数据规模小和工艺不稳定问题使得难以建立精确的数学模型来对电阻点焊参数进行预测。该文提出一种将贝叶斯极限梯度提升机(Bayes-XGBoost)与粒子群优化(PSO)算法结合的方法,... 电阻点焊是多种因素交互作用的复杂过程。该过程的复杂性加上数据规模小和工艺不稳定问题使得难以建立精确的数学模型来对电阻点焊参数进行预测。该文提出一种将贝叶斯极限梯度提升机(Bayes-XGBoost)与粒子群优化(PSO)算法结合的方法,对厚度为0.15 mm的镍片和0.4 mm的不锈钢电池正极帽选取合适的样本特征和样本组合;利用极限梯度提升机(XGBoost)的非线性切分能力和防控过拟合机制对点焊工艺参数进行正向训练,并引入贝叶斯优化为梯度提升机选取最佳超参数;利用粒子群优化算法的全局寻优能力,对可变目标值的工艺参数进行反向预测,从而得到最优工艺参数。电阻点焊实验表明该方法比文中其他对比算法具有较强的综合性能,能够有效辅助点焊工艺。 展开更多
关键词 电阻点焊参数 贝叶斯优化 极限梯度提升 粒子群优化
在线阅读 下载PDF
同步压缩小波与极限梯度提升树融合的柴油机失火故障诊断 被引量:11
4
作者 李卫星 陶建峰 +1 位作者 覃程锦 刘成良 《西安交通大学学报》 EI CAS CSCD 北大核心 2019年第2期47-54,169,共9页
针对柴油机失火故障诊断特征提取分辨率较低和分类评估容易出现过拟合的问题,提出了一种同步压缩小波变换和极限梯度提升树融合的诊断方法。在不同转速下进行柴油机失火性能试验,采集缸盖振动信号,对信号利用时域统计、同步压缩小波提... 针对柴油机失火故障诊断特征提取分辨率较低和分类评估容易出现过拟合的问题,提出了一种同步压缩小波变换和极限梯度提升树融合的诊断方法。在不同转速下进行柴油机失火性能试验,采集缸盖振动信号,对信号利用时域统计、同步压缩小波提取特征,再采用局部线性嵌入方法进行特征降维,最后利用极限梯度提升树进行失火评估分类。不同工况与评估方法下的对比实验结果表明,所提方法的分类准确率最高可达99.828%,相比小波包特征提取的评估方法提升至少10%。在低模型复杂度下,所提方法具有最小的模型预测均方根误差,证明了方法的鲁棒性和抑制模型过拟合的能力。 展开更多
关键词 失火故障诊断 同步压缩小波变换 极限梯度提升 局部线性嵌入
在线阅读 下载PDF
基于XGBoost-SHAP的串列布置三圆柱水动力学特性参数预测
5
作者 钟家文 周水根 +1 位作者 宋金泽 朱红钧 《力学学报》 北大核心 2025年第4期843-853,共11页
基于极限梯度提升(eXtreme Gradient Boosting,XGBoost)算法和SHAP(SHapley Additive exPlanations)分析对低雷诺数下串列三圆柱绕流的水动力学特性参数进行了机器学习研究,采用开源计算流体力学软件OpenFOAM模拟并建立了在不同工况下... 基于极限梯度提升(eXtreme Gradient Boosting,XGBoost)算法和SHAP(SHapley Additive exPlanations)分析对低雷诺数下串列三圆柱绕流的水动力学特性参数进行了机器学习研究,采用开源计算流体力学软件OpenFOAM模拟并建立了在不同工况下各圆柱的升阻力和涡脱频率数据集.对比决定系数、绝对误差和误差率等参数,基于XGBoost算法建立的机器学习模型经过超参数优化后具有良好的预测性能,在对数据集范围之外的文献参数预测中,最大误差率为16.03%,经过二次学习后可降低至0.71%.利用SHAP分析分别解释模型在整体和局部的预测结果,得到雷诺数、上游间距和下游间距分别对串列三圆柱的9个水动力特征参数累计平均贡献度,并开展了归因分析.此外,捕捉到输入特征局部贡献值的异变,结合流场结构分析发现,当上游间距为2、下游间距从2增大为3时,下游间距对下游圆柱的平均阻力的SHAP值由−0.22增大到0.03,对升力均方根值的SHAP值由−0.22增大到0.04,尾流干涉模式由拓展体变为交替再附着模式.当上游间距为6时,下游间距从2增大到6时,SHAP局部分析量化了双排涡结构中下游圆柱的水动力特征变化规律. 展开更多
关键词 串列三圆柱 升阻力 涡脱频率 极限梯度提升 沙普利加性解释
在线阅读 下载PDF
极端梯度提升与随机森林融合的天然气露点预测方法 被引量:2
6
作者 熊伟 何彦霖 +2 位作者 宋伟 张厚望 尹爱军 《装备环境工程》 CAS 2022年第6期133-140,共8页
目的解决目前水露点数据多为人工采用测量仪器测得,时效性低且成本高昂的问题。方法建立一种基于极端梯度提升(XGBoost)和随机森林(RF)的天然气水露点预测方法。采用XGBoost方法对所有监测工艺参数进行分析,筛选出主要影响水露点的关键... 目的解决目前水露点数据多为人工采用测量仪器测得,时效性低且成本高昂的问题。方法建立一种基于极端梯度提升(XGBoost)和随机森林(RF)的天然气水露点预测方法。采用XGBoost方法对所有监测工艺参数进行分析,筛选出主要影响水露点的关键工艺特征参数,以排除无关特征参数对预测的干扰。建立RF预测模型,输入关键特征集参数,实现对水露点的实时预测。以重庆气矿某脱水监测系统监测数据与生产数据为例,对所提预测方法进行对比分析验证。结果相较于XGBoost、SVM等预测方法,RF模型具有最佳的预测性能,且经过XGBoost特征选择后,RF预测结果的MAE值降低了0.0169℃,RMSE值降低了0.0146℃。结论基于极端梯度提升与随机森林融合的水露点预测方法具有更优的预测精度与鲁棒性,对指导脱水现场生产具有积极作用。 展开更多
关键词 三甘醇脱水装置 天然气水露点 极端梯度提升(xgboost) 特征提取 随机森林(RF)
在线阅读 下载PDF
基于PCA-SSA-XGBoost算法的拱坝应力预测模型研究 被引量:1
7
作者 崔博 安惠伦 +1 位作者 陈文龙 王佳俊 《水力发电》 CAS 2024年第5期45-53,共9页
由于大坝应力受水位、温度等众多因素共同作用,各影响因子间的相互关联会引起多重共线性问题,容易导致以此为输入的预测模型出现伪回归现象。此外,现有基于机器学习算法的应力预测模型由于训练特征过多、过度训练易产生过拟合现象,其预... 由于大坝应力受水位、温度等众多因素共同作用,各影响因子间的相互关联会引起多重共线性问题,容易导致以此为输入的预测模型出现伪回归现象。此外,现有基于机器学习算法的应力预测模型由于训练特征过多、过度训练易产生过拟合现象,其预测精度还有待提高。针对上述问题,提出了基于主成分分析法(PCA)和麻雀搜索算法(SSA)改进的极限梯度提升算法(PCA-SSA-XGBoost)构建拱坝应力预测模型。该模型首先采用主成分分析法对参数进行降维,降低影响因子的多重共线性影响;进而通过SSA算法优化XGBoost的超参数,以避免传统算法过拟合,进一步提高模型预测性能。将该模型应用于我国西南某混凝土拱坝工程,对应力及应力相关监测数据进行处理、分析和预测,并与多元线性回归模型(MVLR)、神经网络模型(RBFNN)、极限梯度提升回归预测模型(XGBR)的预测结果进行对比分析。结果表明,基于PCA-SSA-XGBoost算法的应力预测模型可克服输入变量的多重共线性和过拟合问题,在预测精度方面具有优越性。 展开更多
关键词 拱坝 应力预测 主成分分析 极限梯度提升 麻雀搜索
在线阅读 下载PDF
基于CNN和XgBoost的香蕉成熟度判别 被引量:1
8
作者 韩雪 张磊 +1 位作者 赵雅菲 王聪 《食品与机械》 CSCD 北大核心 2024年第4期127-135,178,共10页
目的:提高香蕉成熟度的判别准确率。方法:基于卷积神经网络和极限梯度提升算法建立香蕉成熟度的判别方法。先通过卷积神经网络提取香蕉图像特征,并采用全连接层网络和线性判别分析方法精简香蕉图像特征;通过贝叶斯优化算法优化极限梯度... 目的:提高香蕉成熟度的判别准确率。方法:基于卷积神经网络和极限梯度提升算法建立香蕉成熟度的判别方法。先通过卷积神经网络提取香蕉图像特征,并采用全连接层网络和线性判别分析方法精简香蕉图像特征;通过贝叶斯优化算法优化极限梯度提升算法超参数;将简化后的香蕉图像特征输入极限梯度提升算法,通过极限梯度提升算法对香蕉成熟度进行判别。结果:所提方法对香蕉成熟度的判别准确度为91.25%;与已有方法相比,所提方法对小数据量香蕉的成熟度判别准确率明显提高。结论:该方法可实现被测香蕉成熟度的准确判别,有助于仓库经理、出口商实时监测香蕉的成熟度状况。 展开更多
关键词 香蕉 成熟度判别 卷积神经网络 极限梯度提升算法 小数据量
在线阅读 下载PDF
基于SC-XGBoost的电站燃煤低位发热量软测量方法
9
作者 乔世超 王轶男 +4 位作者 吕佳阳 陈衡 刘涛 徐钢 翟融融 《煤炭科学技术》 EI CAS CSCD 北大核心 2024年第S01期332-340,共9页
随着国家大力推进能源供给侧结构性改革,新能源装机容量不断提升,电力市场竞争愈加激烈。另一方面,全球煤炭市场的复杂多变,导致以煤炭为能量来源的发电企业成本上涨。燃煤发热量是衡量煤质的重要评价标准之一,也是采购煤炭最重要的依据... 随着国家大力推进能源供给侧结构性改革,新能源装机容量不断提升,电力市场竞争愈加激烈。另一方面,全球煤炭市场的复杂多变,导致以煤炭为能量来源的发电企业成本上涨。燃煤发热量是衡量煤质的重要评价标准之一,也是采购煤炭最重要的依据,对燃煤发热量进行准确预测能够有效地控制电厂运行采购成本。为了实现燃煤发热量的高效预测,采用Pearson系数对相关变量进行特征选取,采用基于密度的噪点空间聚类(Density-Based Spatial Clustering of Applications with Noise,DBSCAN)算法对某电厂自备煤厂近2年1733条化验数据进行去噪,对去噪后数据进行谱聚类(Spectral Clustering,SC)分析。将分类后的子样本集采用极致梯度提升(Extreme Gradient Boosting,XGBoost)算法分别建立预测模型,并与最小二乘法回归(Ordinary Least Squares,OLS)、支持向量机(Support Vector Machines,SVM)模型进行性能比较。结果表明,基于XGBoost的电站燃煤发热量预测模型相较于其他算法准确性有明显提升,泛化能力更强。对经过SC算法分类后的燃煤分别建立预测模型能够进一步提高模型的精细化水平,为燃煤电站发热量预测提供一种可靠高效的方法。 展开更多
关键词 低位发热量 机器学习 谱聚类 极致梯度提升(xgboost) 软测量
在线阅读 下载PDF
融合SHAP和TSO-XGBoost模型的水路货运量预测
10
作者 温泉 余玉欢 +1 位作者 庄尚德 牟军敏 《水利水运工程学报》 CSCD 北大核心 2024年第6期86-96,共11页
水路货运量需求受诸多因素影响,长江干线中游“645”工程实施后,航道通航条件得到了明显改善,为了更好分析工程实施后货运量变化趋势,提出一种新的水路货运量预测模型。首先,采用二次插值法和KNN反距离权重插值法解决高维面板数据中时... 水路货运量需求受诸多因素影响,长江干线中游“645”工程实施后,航道通航条件得到了明显改善,为了更好分析工程实施后货运量变化趋势,提出一种新的水路货运量预测模型。首先,采用二次插值法和KNN反距离权重插值法解决高维面板数据中时间粒度不统一与缺失问题,利用层次聚类和SHAP值的可解释性综合筛选关键影响因素特征序列,降低预测模型输入数据的维度和规模,引入Halton低差异序列和准反射学习策略(QRBL)大幅提升金枪鱼群优化算法(TSO)的寻优效能,增强TSO算法对极限梯度提升(XGBoost)模型中决策树数量、决策树的深度、学习速率等决定模型拟合能力的超参组合寻优效果。结果表明,新模型预测精度显著优于对比模型,可更好地适用于多特征影响因素下的水路货运量预测研究。 展开更多
关键词 金枪鱼群优化算法(TSO) 极限梯度提升(xgboost) 水路货运量
在线阅读 下载PDF
基于PCA-GA-XGBoost模型的吉林省水资源 承载力评价 被引量:2
11
作者 庞博文 李治军 《人民珠江》 2024年第4期98-106,共9页
为了提高水资源承载力评价的效率和准确性,提出了一种基于主成分分析(PCA)、遗传算法(GA)和极限梯度提升树(XGBoost)的指标评价模型。定义了以水资源、社会经济、生态环境为子系统的14项评价指标;采用主成分分析法对评价指标进行降维处... 为了提高水资源承载力评价的效率和准确性,提出了一种基于主成分分析(PCA)、遗传算法(GA)和极限梯度提升树(XGBoost)的指标评价模型。定义了以水资源、社会经济、生态环境为子系统的14项评价指标;采用主成分分析法对评价指标进行降维处理;基于梯度提升决策树对吉林省2011—2021年的水资源承载力进行评价分析,并利用遗传算法对极限梯度提升树中4个参数进行优化。结果表明:经主成分分析简化评价指标后,PCA-GA-XGBoost模型的相关系数等指标均优于GA-BP、GA-SVM、GA-XGBoost和XGBoost;2011—2021年吉林省水资源承载力位于0.192~0.724,为先上升后下降再上升趋势,承载力状况逐年改善;利用模型内置的特征值重要度排序功能,识别得出重要度最大的指标为每公顷化肥施用量(0.5307),是影响吉林省水资源承载力的关键因素。 展开更多
关键词 主成分分析 遗传算法 极限梯度提升 水资源承载力 吉林省
在线阅读 下载PDF
基于IDBO-XGBoost的铁路隧道岩爆烈度等级预测方法与应用
12
作者 李时宜 《铁道建筑》 北大核心 2024年第11期118-123,共6页
为减少铁路隧道施工过程中岩爆事故的发生,在施工前做好岩爆烈度等级预测,提出了改进蜣螂优化算法(Improved Dung Beetle Optimizer,IDBO)与极限梯度提升树(Extreme Gradient Boosting,XGBoost)相结合的铁路隧道岩爆烈度等级预测模型。... 为减少铁路隧道施工过程中岩爆事故的发生,在施工前做好岩爆烈度等级预测,提出了改进蜣螂优化算法(Improved Dung Beetle Optimizer,IDBO)与极限梯度提升树(Extreme Gradient Boosting,XGBoost)相结合的铁路隧道岩爆烈度等级预测模型。首先,依据岩爆成因及特点,综合选取围岩切向应力(σθ)等四个特征因素作为预测岩爆烈度等级的主控因素,建立岩爆烈度等级预测数据集;其次,引入Sine混沌映射、黄金正弦策略(Golden Sine Strategy,SA)、自适应高斯-柯西变异扰动策略以及贪婪选择策略并进行改进,以提高其全局搜索能力和稳定性;而后利用IDBO优化XGBoost中的超参数提升其预测精度,同时避免XGBoost出现“过拟合”现象;最后,将其结果与DBO-XGBoost、粒子群算法优化反向传播神经网络模型(Particle Swarm-Optimization Back Propagation Neural Network,PSO-BPNN)和遗传算法优化支持向量机模型(Genetic Algorithm Support-Vector Machine,GA-SVM)的结果进行对比。结果表明:IDBO-XGBoost模型准确率最高,相较于其他三种模型在测试样本中的准确率分别提高了8.69%、17.39%、8.69%;IDBO-XGBoost模型在处理岩爆问题上能更好地捕捉岩爆等级与指标之间的联系,可为实际工程的岩爆预测提供科学依据。 展开更多
关键词 铁路隧道 岩爆烈度 预测 蜣螂优化算法(DBO) 极限梯度提升树(xgboost)
在线阅读 下载PDF
基于XGBoost的隧道掘进机操作参数智能决策系统设计 被引量:9
13
作者 王飞 龚国芳 +1 位作者 段理文 秦永峰 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2020年第4期633-641,共9页
为了实现隧道施工的同质化,提出基于极端梯度提升算法(XGBoost)预测模型的隧道掘进机(TBM)操作参数的智能决策方法.定义场操作系数指数(FOI)作为替代传统场切深指数(FPI)的围岩级别特征参数,使用XGBoost算法建立预测模型以实现对FOI的预... 为了实现隧道施工的同质化,提出基于极端梯度提升算法(XGBoost)预测模型的隧道掘进机(TBM)操作参数的智能决策方法.定义场操作系数指数(FOI)作为替代传统场切深指数(FPI)的围岩级别特征参数,使用XGBoost算法建立预测模型以实现对FOI的预测,对围岩级别进行预测、判断.通过对优秀司机在特定FOI下TBM操作参数的选择,建立专家模型实现FOI与特定TBM操作参数的关联,实现TBM操作参数的智能决策.使用引松工程的现场数据进行对比实验,结果表明,设计的TBM操作参数的智能决策系统能够实现对优秀的TBM司机操作参数决策的复现,相比于以FPI为特征参数的传统智能决策系统,新系统的推进速度和刀盘转速两部分的平均相对误差分别下降8.84%和7.97%. 展开更多
关键词 隧道掘进机(TBM) 智能决策 场操作系数指数(FOI) 极端梯度提升算法(xgboost) 预测
在线阅读 下载PDF
基于WOA-XGBoost的锂离子电池剩余使用寿命预测 被引量:6
14
作者 史永胜 李锦 +1 位作者 任嘉睿 张凯 《储能科学与技术》 CAS CSCD 北大核心 2022年第10期3354-3363,共10页
使用早期数据准确预测电池剩余使用寿命(RUL)可以加速电池的改进和优化。然而电池退化过程是非线性的,且在早期阶段容量衰减可忽略不计,使得RUL预测具有挑战性。为解决这一问题,本工作使用电池早期循环数据,并构建WOA算法和XGBoost算法... 使用早期数据准确预测电池剩余使用寿命(RUL)可以加速电池的改进和优化。然而电池退化过程是非线性的,且在早期阶段容量衰减可忽略不计,使得RUL预测具有挑战性。为解决这一问题,本工作使用电池早期循环数据,并构建WOA算法和XGBoost算法的混合预测模型预测RUL。文章首先对电池实验数据进行预处理,观察放电电压-容量退化曲线和容量增量曲线的变化,选取与实际容量状态相关性较高的潜在特征,并将其时间序列数据作为XGBoost预测模型的输入,然后采用WOA算法对模型进行参数优化。最后使用由丰田研究所提供的84个在多步充电和恒流放电条件下的锂离子电池数据进行验证,结果表明所提出模型仅使用前100个周期循环数据即可对整个电池寿命预测,测试误差低于4%。 展开更多
关键词 寿命预测 早期数据 电压特征 极限梯度提升 鲸鱼优化
在线阅读 下载PDF
基于GRU和XGBoost的矿压显现规律预测 被引量:6
15
作者 柴敬 刘义龙 +2 位作者 王安义 屈世甲 欧阳一博 《工矿自动化》 北大核心 2022年第1期91-97,共7页
采用光纤传感器监测的光纤频移值对矿压显现规律进行表征的过程中,传感器采集的数据存在缺失现象,无法准确预测矿压显现规律。针对该问题,以千秋煤矿为工程背景,在假设光纤下半部分数据丢失的前提下,引入GRU(门控循环单元)和LSTM(长短... 采用光纤传感器监测的光纤频移值对矿压显现规律进行表征的过程中,传感器采集的数据存在缺失现象,无法准确预测矿压显现规律。针对该问题,以千秋煤矿为工程背景,在假设光纤下半部分数据丢失的前提下,引入GRU(门控循环单元)和LSTM(长短期记忆网络)2种预测模型,对缺失的光纤频移值进行对比预测,得出GRU模型的收敛速度优于LSTM模型的收敛速度,说明基于GRU模型的缺失值处理方法较优。将原始完整的光纤频移值转换为可表征矿压显现位置的光纤平均频移变化度,引入XGBoost(极端梯度提升)模型和BP神经网络模型进行对比预测,XGBoost模型能准确预测出测试集中所有出现“尖峰”的位置,而BP神经网络模型只预测出2处“尖峰”位置,说明XGBoost模型的预测效果优于BP神经网络模型的预测效果。将预测出的光纤频移缺失值替换至缺失位置,形成“完整”光纤频移值数据,将该数据转换为光纤平均频移变化度后,采用XGBoost模型进行预测。验证结果表明:LSTM模型及GRU模型均可准确预测出光纤下半部分的数据,且GRU模型准确性较LSTM模型准确性高;使用XGBoost可准确预测出测试集中出现的周期来压;通过GRU模型预测出的缺失数据经整合至缺失位置后,使用XGBoost模型仍可进行有效的矿压预测。 展开更多
关键词 矿压显现规律 极端梯度提升算法 xgboost GRU 光纤频移值 光纤平均频移变化度
在线阅读 下载PDF
结合振动特征优选和GWOA-XGBoost的电机轴承故障诊断 被引量:8
16
作者 于飞 樊清川 宣敏 《国防科技大学学报》 EI CAS CSCD 北大核心 2023年第3期99-107,共9页
为解决电机轴承故障状态难以识别,从而造成诊断精度不高的情况,提出了一种基于信号特征提取与极限梯度提升算法(extreme gradient boosting,XGBoost)结合的电机轴承故障诊断模型。使用优化的变分模态分解获得振动信号的固有模态函数(int... 为解决电机轴承故障状态难以识别,从而造成诊断精度不高的情况,提出了一种基于信号特征提取与极限梯度提升算法(extreme gradient boosting,XGBoost)结合的电机轴承故障诊断模型。使用优化的变分模态分解获得振动信号的固有模态函数(intrinsic mode function,IMF)分量,再基于多尺度熵理论计算各IMF分量的多尺度熵值进行特征重构。在鲸鱼优化算法(whale optimization algorithm,WOA)中引入遗传算法的选择、交叉、变异操作对WOA进行改进。用改进的WOA算法对XGBoost的超参数进行寻优,获得了帮助XGBoost取得最优分类效果的超参数组合,将7种不同故障类型的振动信号进行重构后输入优化的XGBoost模型进行故障诊断。实验结果表明,所提GWOA-XGBoost模型的电机轴承故障诊断精度能够达到97.14%,相较于传统诊断方法,性能提升效果显著。 展开更多
关键词 电机轴承 故障诊断 变分模态分解 鲸鱼优化算法 极限梯度提升
在线阅读 下载PDF
基于多模型Stacking融合的基坑测斜时序预测
17
作者 胡比澜 王洋洋 张永强 《浙江大学学报(工学版)》 北大核心 2025年第4期706-716,共11页
为了准确预测基坑倾斜变形,提出基于极致梯度提升(XGBoost)、长短期记忆(LSTM)和线性回归(LR)的堆叠多变量预测模型.利用XGBoost集成学习的优越性和双层LSTM算法预测传统基坑变形的准确度,提升模型的预测精度和泛化能力.在数据预处理阶... 为了准确预测基坑倾斜变形,提出基于极致梯度提升(XGBoost)、长短期记忆(LSTM)和线性回归(LR)的堆叠多变量预测模型.利用XGBoost集成学习的优越性和双层LSTM算法预测传统基坑变形的准确度,提升模型的预测精度和泛化能力.在数据预处理阶段,引入K最近邻(KNN)插补算法增加可有效利用的数据总量,使用深度学习模型Informer的时间信息处理方式,改善传统算法中有监督学习忽略时间序列数据不同时间间隔的问题.以杭州某在建基坑为工程案例,插补616条缺失数据,将时间信息转为3列时间点特征信息,使用所提模型进行基坑变形预测分析.已有实测数据验证表明,所提模型在预测基坑最大测斜位移及该位移点处深度时的训练精度和泛化能力相比双层LSTM模型及XGBoost模型均有较大提升,使用时间点特征的XGBoost模型比LSTM模型更适合预测对时间因素敏感的指标. 展开更多
关键词 时间序列分析 基坑测斜 双层LSTM 极致梯度提升(xgboost) 堆叠算法
在线阅读 下载PDF
基于XGBoost-SHAP的钢管混凝土柱轴向承载力预测模型 被引量:7
18
作者 陈曦泽 贾俊峰 +2 位作者 白玉磊 郭彤 杜修力 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2023年第6期1061-1070,共10页
为了可靠、准确地预测钢管混凝土(CFST)柱的轴向承载力,建立和解释集成机器学习的CFST柱轴向承载力预测模型.使用马氏距离评估CFST柱数据库质量,通过极限梯度提升(XGBoost)算法建立CFST柱轴向承载力预测模型,使用K折交叉验证(K-Fold CV... 为了可靠、准确地预测钢管混凝土(CFST)柱的轴向承载力,建立和解释集成机器学习的CFST柱轴向承载力预测模型.使用马氏距离评估CFST柱数据库质量,通过极限梯度提升(XGBoost)算法建立CFST柱轴向承载力预测模型,使用K折交叉验证(K-Fold CV)和树结构概率密度估计(TPE)算法寻找模型的最优超参数组合.采用不同评价指标将优化后XGBoost模型的预测值与已有方法和未优化XGBoost模型的计算值比较.使用SHAP方法给出XGBoost模型预测结果的整体和局部的解释.结果表明,经过超参数调整优化的XGBoost模型的性能超越了相关规范和经验公式的性能,且SHAP方法能够有效地解释XGBoost模型的输出. 展开更多
关键词 钢管混凝土(CFST)柱 轴向承载力 极限梯度提升(xgboost) 超参数优化 SHAP 可解释性
在线阅读 下载PDF
基于CSI-XGBoost的高精度WiFi室内定位算法 被引量:12
19
作者 张玄黎 修春娣 +1 位作者 王延昭 杨东凯 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2018年第12期2536-2544,共9页
考虑到室内环境的复杂性和多径效应对Wi Fi指纹定位性能的影响从Intel5300无线网卡中提取信道状态信息(CSI),利用修正后的CSI幅值和相位信息作为指纹特征,使用极限梯度提升(XGBoost)算法构建高精度指纹库,实现分米级的高精度室内定位。... 考虑到室内环境的复杂性和多径效应对Wi Fi指纹定位性能的影响从Intel5300无线网卡中提取信道状态信息(CSI),利用修正后的CSI幅值和相位信息作为指纹特征,使用极限梯度提升(XGBoost)算法构建高精度指纹库,实现分米级的高精度室内定位。进一步通过实测数据分析了采样间隔、室内视距(LOS)和非视距(NLOS)环境、缺失值和数据维度等因素对所提算法定位性能的影响。实际室内环境下的实验结果表明,本文算法受NLOS影响较小,对室内复杂环境有很强的鲁棒性;此外,该算法能够很好地处理高维稀疏数据,解决CSI指纹特征的"误匹配"问题,且对缺失数据不敏感,定位准确度优于90%。 展开更多
关键词 室内定位 信道状态信息(CSI) 指纹匹配 极限梯度提升(xgboost) 相位延拓
在线阅读 下载PDF
GPR、XGBoost和CatBoost模拟江西地区参考作物蒸散量的适应性研究 被引量:6
20
作者 刘小强 代智光 +3 位作者 吴立峰 张富仓 董建华 陈志月 《灌溉排水学报》 CSCD 北大核心 2021年第1期91-96,共6页
【目的】提高机器学习模型模拟参考作物蒸散量在江西省适应性和精度。【方法】基于江西南昌等15个气象站2001—2015年日值气象数据(最高气温、最低气温、地表辐射、大气顶层辐射、相对湿度和2 m高风速),以FAO-56Penman-Monteith(P-M)公... 【目的】提高机器学习模型模拟参考作物蒸散量在江西省适应性和精度。【方法】基于江西南昌等15个气象站2001—2015年日值气象数据(最高气温、最低气温、地表辐射、大气顶层辐射、相对湿度和2 m高风速),以FAO-56Penman-Monteith(P-M)公式的计算结果作为对照,建立了计算ET0的高斯过程回归(GPR)、极限梯度提升(XGBoost)和梯度提升决策树(CatBoost)模型,并分别与经验模型进行比较。【结果】各气象参数对机器学习模型模拟ET0的精度影响由大到小依次为:Rs、Tmax和Tmin、RH、U2,且采用Tmax、Tmin、Rs和RH气象参数组合的机器学习模型(RMSE<0.2mm/d)模拟ET0精度高。此外,3种机器学习模型在有限的气象数据时具有较好的适用性,且优于传统经验模型,其中GPR和CatBoost模型的预测精度高,但GPR模型稳定性最好。【结论】考虑到所研究模型调参的复杂性、预测精度和稳定性,GPR模型可作为江西地区参考作物蒸散量模拟的推荐方法。 展开更多
关键词 参考作物蒸散量 高斯过程回归 极限提升增强 梯度提升决策树 经验模型
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部