期刊文献+
共找到318篇文章
< 1 2 16 >
每页显示 20 50 100
基于樽海鞘群极限学习机的进/发一体化性能寻优控制模型研究
1
作者 于子洋 王晨 +2 位作者 杜宪 聂聆聪 孙希明 《推进技术》 EI CAS CSCD 北大核心 2024年第5期236-249,共14页
为充分发挥航空推进系统的性能,提高性能寻优控制的实时性,将樽海鞘群算法(SSA)与极限学习机(ELM)相结合,基于进/发一体化部件级模型建立数据集,提出一种基于SSA-ELM的数据驱动模型。将该建模方法与广义回归神经网络(GRNN)、BP神经网络(... 为充分发挥航空推进系统的性能,提高性能寻优控制的实时性,将樽海鞘群算法(SSA)与极限学习机(ELM)相结合,基于进/发一体化部件级模型建立数据集,提出一种基于SSA-ELM的数据驱动模型。将该建模方法与广义回归神经网络(GRNN)、BP神经网络(BPNN)和极限学习机(ELM)比较,结果表明,相比于BPNN,ELM,GRNN,SSA-ELM用于预测可以使安装推力的均方根误差(RMSE)分别降低7.41%,17.01%,72.57%,安装油耗的RMSE分别降低4.32%,19.41%,66.77%,具有更高的预测精度。将基于SSA-ELM的数据驱动模型作为机载模型应用到性能寻优控制,结果表明,该机载模型能够维持理想的寻优效果。针对最大安装推力模式开展实时性分析,该机载模型相比于进/发一体化部件级模型,平均计算时间由184.05 ms缩短至1.357 ms,实时性得到显著改善,大大提高了寻优效率。 展开更多
关键词 航空发动 进/发一体化 樽海鞘群优化算法 极限学习 数据驱动模型 性能寻优控制
在线阅读 下载PDF
改进SSA-HKELM模型在海洋弯管剩余寿命预测中的应用 被引量:1
2
作者 骆正山 王良雨 +1 位作者 高懿琼 骆济豪 《安全与环境学报》 北大核心 2025年第5期1770-1779,共10页
针对海洋油气弯管剩余寿命预测问题,建立了基于改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化混合核极限学习机(Hybrid Kernel Extreme Learning Machine,HKELM)的腐蚀深度预测模型。通过最优拉丁超立方初始化种群分布... 针对海洋油气弯管剩余寿命预测问题,建立了基于改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化混合核极限学习机(Hybrid Kernel Extreme Learning Machine,HKELM)的腐蚀深度预测模型。通过最优拉丁超立方初始化种群分布,采用黄金正弦、Tent混沌扰动和柯西变异提高麻雀搜索算法(Sparrow Search Algorithm,SSA)的收敛速度和搜索能力,运用ISSA算法优化HKELM的网络参数,构建海洋弯管腐蚀深度预测模型。依据改进的ASME B31G剩余强度评价准则,计算最大允许腐蚀深度,结合管道腐蚀发展趋势模型,对薄弱弯管进行腐蚀剩余寿命预测。以某海洋管道弯管试验数据为基础对模型进行验证,模型预测精度高达0.989 7,能较好地预测海洋弯管的最大腐蚀深度及未来腐蚀发展趋势。寿命预测结果表明,部分弯管剩余寿命未超过其预期服役时间,为海洋弯管的安全运维及维修更换提供了决策支持。 展开更多
关键词 安全工程 海洋弯管 剩余寿命 改进麻雀搜索算法 混合核极限学习 腐蚀深度预测模型
在线阅读 下载PDF
基于二次分解、LSTM-ELM和误差修正的空气质量指数预测模型 被引量:1
3
作者 周建国 秦远 周路明 《安全与环境学报》 北大核心 2025年第1期322-334,共13页
精准预测空气质量指数(Air Quality Index,AQI)对于制定有效的空气污染治理策略至关重要。为了进一步提升AQI的预测精度,提出了一种新的预测模型,并结合了二次分解(Secondary Decomposition,SD)、优化算法、双尺度预测和误差修正的方法... 精准预测空气质量指数(Air Quality Index,AQI)对于制定有效的空气污染治理策略至关重要。为了进一步提升AQI的预测精度,提出了一种新的预测模型,并结合了二次分解(Secondary Decomposition,SD)、优化算法、双尺度预测和误差修正的方法。首先,采用改良的自适应白噪声完全集合经验模态分解(Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,ICEEMDAN)和样本熵(Sample Entropy,SE)对原始AQI序列进行分解并重构,获得高频、中频和低频3个频率分量。其次,利用经过北方苍鹰算法(Northern Goshawk Optimization,NGO)优化的变分模态分解(Variational Mode Decomposition,VMD)对高频分量进行二次分解,进一步降低其复杂度。再次,引入向量加权平均算法(Weighed Mean of Vectors Algorithm,INFO)对长短期记忆网络(Long Short-Term Memory,LSTM)和极限学习机(Extreme Learning Machine,ELM)的关键参数进行优化,同时利用INFO-LSTM预测高频分量分解后的子序列,进而利用INFO-ELM分别预测中、低频分量,并将所得预测结果进行线性叠加。最后,利用NGO-VMD和INFO-ELM对误差序列进行分解和预测,并对初次预测结果进行修正,得到最终的AQI预测值。研究选取北京、上海和成都3个典型城市为例进行实证分析,并对比了7个对照试验,发现基于二次分解、LSTM-ELM和误差修正的模型具有最高的预测精度。该模型可为治理空气污染提供理论和技术上的帮助。 展开更多
关键词 环境工程学 空气质量指数预测 二次分解 长短期记忆网络 极限学习 向量加权平均算法 误差修正模型
在线阅读 下载PDF
基于因果正则化极限学习机的风电功率短期预测方法 被引量:11
4
作者 杨茂 张书天 王勃 《电力系统保护与控制》 EI CSCD 北大核心 2024年第11期127-136,共10页
随着风电并网比例的逐年提高,电力系统对风电功率预测的准确性和稳定性提出了更高要求。对于同一风电场而言,为了避免不同特征选择方法所选择的风电场特征子集不同,从因果关系的角度出发,提出了一种基于因果正则化极限学习机(causal reg... 随着风电并网比例的逐年提高,电力系统对风电功率预测的准确性和稳定性提出了更高要求。对于同一风电场而言,为了避免不同特征选择方法所选择的风电场特征子集不同,从因果关系的角度出发,提出了一种基于因果正则化极限学习机(causal regularized extreme learning machine, CRELM)的风电功率短期预测方法。首先将极限学习机(extreme learning machine, ELM)建模为结构因果模型(structural causal model, SCM),在此基础上计算隐藏层神经元与输出层神经元之间的平均因果效应向量。然后将该平均因果效应向量与输出层权重相结合构成因果正则化项,在最小化训练误差的同时最大化网络的因果关系,以进一步提升模型的预测准确性和预测稳定性。最后,以国内蒙西某风电场数据为例,与采用特征选择或不采用特征选择的预测模型相对比,验证了所提方法的有效性和适用性。 展开更多
关键词 特征选择 因果正则化 结构因果模型 平均因果效应向量 极限学习
在线阅读 下载PDF
基于IEO-MKELM模型的重整产品辛烷值软测量方法
5
作者 陈晓彦 赵超 +2 位作者 付斌 李卫东 范克威 《石油与天然气化工》 北大核心 2025年第4期131-139,共9页
目的针对催化重整产品辛烷值测量实时性较差的问题,提出基于改进平衡优化器算法的多核极限学习机(IEOMKELM)辛烷值软测量模型。方法采用混沌映射、反向学习策略、优化非线性因子、莱维飞行和贪心选择策略优化基础平衡算法,获得具有更高... 目的针对催化重整产品辛烷值测量实时性较差的问题,提出基于改进平衡优化器算法的多核极限学习机(IEOMKELM)辛烷值软测量模型。方法采用混沌映射、反向学习策略、优化非线性因子、莱维飞行和贪心选择策略优化基础平衡算法,获得具有更高全局和局部搜索能力的改进平衡算法(IEO)。随后将这一改进后的平衡优化算法应用于多核极限学习机(MKELM)多项参数的优化,进而建立了催化重整产品辛烷值软测量模型。结果利用某炼化企业的实测数据对模型精度进行验证,结果表明,由IEO-MKELM模型得到的预测值与实测值间的误差在10^(−3)数量级以下,与其他同类模型相比,IEO-MKELM模型具有更高的预测精度。结论基于IEO-MKELM的辛烷值软测量方法研究对于提高催化重整生产过程的自动化水平具有重要意义。 展开更多
关键词 IEO-MKelm 平衡优化算法 多核极限学习 辛烷值 软测量 预测模型
在线阅读 下载PDF
基于极限学习机的参考作物蒸散量预测模型 被引量:56
6
作者 冯禹 崔宁博 +2 位作者 龚道枝 魏新平 王君勤 《农业工程学报》 EI CAS CSCD 北大核心 2015年第S1期153-160,共8页
为实现气象资料缺乏情况下参考作物蒸散量(reference crop evapotranspiration,ET0)高精度预测,以气象因子的不同组合为输入参数,利用FAO-56 Penman-Monteith公式计算的ET0作为预测标准值建立基于极限学习机(extreme learning machine,E... 为实现气象资料缺乏情况下参考作物蒸散量(reference crop evapotranspiration,ET0)高精度预测,以气象因子的不同组合为输入参数,利用FAO-56 Penman-Monteith公式计算的ET0作为预测标准值建立基于极限学习机(extreme learning machine,ELM)的ET0预测模型。选取川中丘陵区7个气象站点1963-2012年逐日气象资料进行模型训练与测试,并将模拟结果同Hargreaves、Priestley-Taylor、Makkink及Irmark-Allen等4种常用模型进行对比。结果表明:ELM模型能很好地反映气象因子同ET0间复杂的非线性关系,且模拟精度较高;基于最高和最低温度的ELM模型模拟精度(均方根误差和模型效率系数分别为0.504 mm/d和0.827)高于Hargreaves模型(均方根误差和模型有效系数分别为0.692 mm/d和0.741);基于最高、最低温度和辐射的ELM模型模拟精度(均方根误差和模型有效系数分别为0.291 mm/d和0.938)明显高于Priestley-Taylor(均方根误差和模型有效系数分别为0.467 mm/d和0.823)、Makkink(均方根误差和模型有效系数分别为0.540 mm/d和0.800)和Irmark-Allen模型(均方根误差和模型有效系数分别为0.880 mm/d和0.623)。因此基于最高、最低温度和辐射的ELM模型可以作为气象资料缺乏情况下川中丘陵区ET0计算的推荐模型。该研究可为川中丘陵区气象资料缺乏情境下ET0精确计算提供科学依据。 展开更多
关键词 蒸散 模型 作物 极限学习 参考作物蒸散量 预测模型 川中丘陵区
在线阅读 下载PDF
一种改进的极限学习机煤与瓦斯突出预测模型 被引量:26
7
作者 付华 李海霞 +2 位作者 卢万杰 徐耀松 王雨虹 《传感技术学报》 CAS CSCD 北大核心 2016年第1期69-74,共6页
较高精度的煤与瓦斯突出预测是煤矿安全生产的必要前提和保证。为了提高煤与瓦斯突出预测模型的预测精度,提出了一种改进的极限学习机煤与瓦斯突出预测模型。首先利用核主成分分析法对煤与瓦斯突出的影响指标进行降维简化处理,提取指标... 较高精度的煤与瓦斯突出预测是煤矿安全生产的必要前提和保证。为了提高煤与瓦斯突出预测模型的预测精度,提出了一种改进的极限学习机煤与瓦斯突出预测模型。首先利用核主成分分析法对煤与瓦斯突出的影响指标进行降维简化处理,提取指标数据的主成分序列;把主成分序列分为训练样本和验证样本,然后在训练阶段,使用训练样本通过结合了全局搜索和局部搜索的文化基因算法对极限学习机的输入权值和隐含层偏差进行优化,得到最佳预测模型;最后,在最佳预测模型中,用验证样本对煤与瓦斯突出强度进行预测。通过实例验证,该模型能够有效预测煤与瓦斯突出强度。与BP、SVM、ELM、KPCA-ELM等预测模型相比,该模型具有更高的预测精度。 展开更多
关键词 煤与瓦斯突出 预测模型 极限学习 核主成分分析法 文化基因算法
在线阅读 下载PDF
基于极限学习机的土壤硝态氮预测模型研究 被引量:7
8
作者 张淼 孔盼 +3 位作者 李雁华 任海燕 蒲攀 张丽楠 《农业机械学报》 EI CAS CSCD 北大核心 2016年第6期93-99,共7页
利用极限学习机模型解译高氯离子干扰下盐碱土中硝酸根离子选择电极响应信号,系统分析了漂移校正算法、能斯特及极限学习机模型对电极法硝态氮(NO^-_3-N)预测结果准确性的影响差异。结果表明,漂移校正算法可明显提高传感器标定方程的重... 利用极限学习机模型解译高氯离子干扰下盐碱土中硝酸根离子选择电极响应信号,系统分析了漂移校正算法、能斯特及极限学习机模型对电极法硝态氮(NO^-_3-N)预测结果准确性的影响差异。结果表明,漂移校正算法可明显提高传感器标定方程的重复性和一致性,响应斜率及截距电位的波动范围分别缩小了3.67%和7.25%;极限学习机模型的最优隐含层节点数为14;基于极限学习机的电极法NO^-_3-N质量浓度预测模型可较好抑制盐碱土中氯离子干扰,与标准检测结果之间的最大绝对误差和均方根误差分别为6.36 mg/L和4.02 mg/L。相关研究结论可为电极法测土过程中的信号校正、数据处理模型和模型参数选取提供参考。 展开更多
关键词 土壤硝态氮 离子选择电极 能斯特模型 极限学习
在线阅读 下载PDF
蝙蝠算法优化极限学习机的电力负荷预测模型 被引量:11
9
作者 孔令春 孙琼琼 杨照峰 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2016年第1期89-92,共4页
为提高电力负荷预测的准确性,提出蝙蝠算法优化极限学习的电力负荷预测模型.首先收集电力负荷历史数据,然后采用蝙蝠算法对延迟时间和嵌入维以及极限学习的隐含层结点数目进行优化,利用电力负荷历史数据进行重构,最后采用最优隐含层结... 为提高电力负荷预测的准确性,提出蝙蝠算法优化极限学习的电力负荷预测模型.首先收集电力负荷历史数据,然后采用蝙蝠算法对延迟时间和嵌入维以及极限学习的隐含层结点数目进行优化,利用电力负荷历史数据进行重构,最后采用最优隐含层结点数目的极限学习机建立电力负荷预测模型,并采用具体数据仿真测试.实验结果表明:模型建立了整体性能优异的电力负荷预测模型,提高了电力负荷的预测精度. 展开更多
关键词 电力负荷 预测精度 蝙蝠算法 极限学习 预测模型
在线阅读 下载PDF
基于极限学习机的板形预测模型 被引量:10
10
作者 黄长清 李滔 《机械科学与技术》 CSCD 北大核心 2014年第4期592-595,共4页
高效地建立起板形模型有利于提高板带轧制过程中的板形精度和有效实现板形控制。提出了一种基于极限学习机(ELM)的板带轧制过程中板形预测模型,不但可以简化参数选择过程,在核函数选择上可以根据训练样本值自动选择无须手动选择,而且可... 高效地建立起板形模型有利于提高板带轧制过程中的板形精度和有效实现板形控制。提出了一种基于极限学习机(ELM)的板带轧制过程中板形预测模型,不但可以简化参数选择过程,在核函数选择上可以根据训练样本值自动选择无须手动选择,而且可以提高模型的训练速度。结合铝板带四连轧机组在线实测数据进行模型训练,实现对轧制过程板形的预测且得到实验验证。本算法与支持向量机(SVM)模型预测对比,在训练样本数量较少的情况下,模型预测精度都能达到期望精度值,且具有同样甚至更高的预测精度,还具有急速的特点和更强的泛化能力。 展开更多
关键词 极限学习 轧制 板形 预测模型 支持向量
在线阅读 下载PDF
基于极限学习机的短期交通流预测混合优化模型 被引量:6
11
作者 蔡浩 李林峰 +2 位作者 李涵 李新 周腾 《交通运输系统工程与信息》 EI CSCD 北大核心 2023年第5期75-82,183,共9页
交通流的动态性、不确定性和非线性等特性导致交通流难以精确预测,本文在极限学习机(Extreme Learning Machine,ELM)的基础上,通过嵌入原子搜索算法(Atom Search Optimization,ASO),构建ASO-ELM短期交通流预测混合优化模型,对比现有短... 交通流的动态性、不确定性和非线性等特性导致交通流难以精确预测,本文在极限学习机(Extreme Learning Machine,ELM)的基础上,通过嵌入原子搜索算法(Atom Search Optimization,ASO),构建ASO-ELM短期交通流预测混合优化模型,对比现有短期交通流预测模型,分析混合优化模型在短期交通流预测领域的表现。实验选取荷兰阿姆斯特丹市A10环形公路为路网原型,使用ASO-ELM混合模型与常见交通流预测模型进行对比实验。实验结果表明:ASO-ELM混合模型在4个数据集下的平均绝对百分比误差(Mean Absolute Percentage Error,MAPE)相较于ELM模型分别下降了4.3%、3.5%、6.9%和5.4%,均方根误差(Root Mean Squared Error,RMSE)分别下降了4.8%、4.0%、2.0%和5.2%;其次,与人工神经网络(Artificial Neural Network,ANN)相比,MAPE分别下降了9.6%、8.6%、9.8%和5.0%,RMSE也分别下降了4.5%、5.9%、2.6%和1.7%。研究成果揭示了混合优化模型在短期交通流预测领域的潜力。 展开更多
关键词 智能交通 短期交通流预测 混合预测模型 原子搜索算法 极限学习
在线阅读 下载PDF
基于Vapnik-Chervonenkis泛化界的极限学习机模型复杂性控制 被引量:4
12
作者 刘学艺 宋春跃 李平 《控制理论与应用》 EI CAS CSCD 北大核心 2014年第5期644-653,共10页
模型复杂性是决定学习机器泛化性能的关键因素,对其进行合理的控制是模型选择的重要原则.极限学习机(extreme learning machine,ELM)作为一种新的机器学习算法,表现出了优越的学习性能.但对于如何在ELM的模型选择过程中合理地度量和控... 模型复杂性是决定学习机器泛化性能的关键因素,对其进行合理的控制是模型选择的重要原则.极限学习机(extreme learning machine,ELM)作为一种新的机器学习算法,表现出了优越的学习性能.但对于如何在ELM的模型选择过程中合理地度量和控制其模型复杂性这一基本问题,目前尚欠缺系统的研究.本文讨论了基于Vapnik-Chervonenkis(VC)泛化界的ELM模型复杂性控制方法(记作VM),并与其他4种经典模型选择方法进行了系统的比较研究.在人工和实际数据集上的实验表明,与其他4种经典方法相比,VM具有更优的模型选择性能:能选出同时具有最低模型复杂性和最低(或近似最低)实际预测风险的ELM模型.此外,本文也为VC维理论的实际应用价值研究提供了一个新的例证. 展开更多
关键词 VC泛化界 模型复杂性 极限学习 小样本 实际预测风险
在线阅读 下载PDF
多策略改进SSA优化KELM的边坡稳定性预测模型 被引量:13
13
作者 祁云 薛凯隆 +3 位作者 李绪萍 汪伟 白晨浩 吉准泽 《中国安全科学学报》 北大核心 2025年第3期92-98,共7页
为了能够更加精准地预测边坡稳定状态,从而有效预防边坡失稳事故,提出改进麻雀搜索算法(ISSA)与核极限学习机(KELM)相结合的ISSA-KELM边坡稳定性预测模型。首先,将边坡失稳特征中的容重、黏聚力等6个主要影响因素作为预测指标,建立边坡... 为了能够更加精准地预测边坡稳定状态,从而有效预防边坡失稳事故,提出改进麻雀搜索算法(ISSA)与核极限学习机(KELM)相结合的ISSA-KELM边坡稳定性预测模型。首先,将边坡失稳特征中的容重、黏聚力等6个主要影响因素作为预测指标,建立边坡稳定性评价数据集;其次,引入Sine混沌映射、Levy飞行策略、动态自适应权重以及融合最优爆炸策略和反向学习改进麻雀搜索算法(SSA),以提高其全局搜索能力和稳定性;而后利用ISSA优化KELM中的核参数ψ和正则化系数C,提升其预测精度,同时避免KELM出现过拟合现象;最后,对比分析ISSA-KELM模型与SSA-KELM、粒子群优化算法(PSO)-KELM以及PSO-支持向量机(SVM)模型的预测结果,并将ISSA-KELM模型应用于山西某露天煤矿。结果表明:ISSA-KELM模型的准确率、精确率、召回率和F 1分数分别达到了0.9459、1、0.8667和0.929,均优于SSA-KELM、PSO-KELM和PSO-SVM模型,模型的预测结果与实际值最为接近,表明所建ISSA-KELM模型具有较强的泛化能力。 展开更多
关键词 边坡稳定性 预测模型 改进麻雀搜索算法(ISSA) 极限学习(Kelm) 预测指标 混淆矩阵
在线阅读 下载PDF
一种结合互补集合经验模态分解和小波核极限学习机的短期电力负荷预测模型 被引量:6
14
作者 郭瑞 樊亚敏 潘玉民 《计算机应用与软件》 CSCD 2016年第12期243-247,263,共6页
电力系统的管理和调度对精确的负荷预测模型有着极高的要求。为全面提高负荷预测模型的性能,提出一种新型的结合互补集成经验模态分解(CEEMD)和小波核函数极限学习机(WKELM)的短期电力负荷组合预测模型。首先通过CEEMD将历史电力负荷数... 电力系统的管理和调度对精确的负荷预测模型有着极高的要求。为全面提高负荷预测模型的性能,提出一种新型的结合互补集成经验模态分解(CEEMD)和小波核函数极限学习机(WKELM)的短期电力负荷组合预测模型。首先通过CEEMD将历史电力负荷数据自适应地分解为一系列相对平稳的子序列,对各分量建立小波核极限学习机的预测模型,预测各分量的负荷值并对其进行求和得到最终预测结果。用四种预测模型对真实的负荷数据进行训练预测,算例表明新模型在预测精度和效率上都具有一定优势,同时克服了传统EMD中容易出现的模态混叠问题以及ELM中存在的过拟合等缺陷,具有一定的实际应用潜力。 展开更多
关键词 短期负荷预测 互补的集成经验模态分解 小波核极限学习 组合预测模型
在线阅读 下载PDF
基于KELM的趵突泉泉域地下水流替代模型
15
作者 王子健 骆乾坤 +3 位作者 李迎春 刘鑫 邓亚平 钱家忠 《合肥工业大学学报(自然科学版)》 北大核心 2025年第1期85-91,共7页
文章以济南市趵突泉泉域为研究区,采用核极限学习机(kernel extreme learning machine,KELM)建立泉域地下水流数值模型的替代模型,使用拉丁超立方抽样(Latin hypercube sampling,LHS)方法确定60组地下水开采方案用于训练KELM模型,通过... 文章以济南市趵突泉泉域为研究区,采用核极限学习机(kernel extreme learning machine,KELM)建立泉域地下水流数值模型的替代模型,使用拉丁超立方抽样(Latin hypercube sampling,LHS)方法确定60组地下水开采方案用于训练KELM模型,通过对比地下水流数值模型的模拟结果与替代模型输出的结果,评价所建立替代模型的性能。结果表明:替代模型输出的地下水位值与地下水流数值模型模拟得到的地下水位值基本接近,且模型的运行时间减少了约99.62%。说明该模型可作为趵突泉泉域地下水流数值模型的替代模型,可提高区域地下水优化管理模型的求解效率。 展开更多
关键词 地下水数值模拟 趵突泉泉域 替代模型 极限学习(Kelm) 拉丁超立方抽样(LHS)
在线阅读 下载PDF
基于隐特征空间的极限学习机模型选择 被引量:2
16
作者 毛文涛 赵中堂 贺欢欢 《计算机应用》 CSCD 北大核心 2013年第6期1600-1603,共4页
针对极限学习机(ELM)中冗余的隐神经元会削弱模型泛化能力的缺点,提出了一种基于隐特征空间的ELM模型选择算法。首先,为了寻找合适的ELM隐层,在ELM中添加正则项,该项为现有隐层空间到低维隐特征空间的映射函数矩阵的Frobenius范数;其次... 针对极限学习机(ELM)中冗余的隐神经元会削弱模型泛化能力的缺点,提出了一种基于隐特征空间的ELM模型选择算法。首先,为了寻找合适的ELM隐层,在ELM中添加正则项,该项为现有隐层空间到低维隐特征空间的映射函数矩阵的Frobenius范数;其次,为解决该非凸问题,采用交替优化的策略,并通过凸二次型优化学习该隐空间;最终自适应得到最优映射函数和ELM模型。分别采用UCI标准数据集和载荷识别工程数据对所提算法进行测试,结果表明,与经典ELM相比,该算法可有效提高预测精度和数值稳定性,与现有模型选择算法相比,该算法预测精度相当,但运行时间则大幅降低。 展开更多
关键词 极限学习 模型选择 交替优化 隐空间 泛化能力
在线阅读 下载PDF
基于改进花粉算法的极限学习机分类模型 被引量:10
17
作者 邵良杉 李臣浩 《计算机工程与应用》 CSCD 北大核心 2020年第1期172-179,共8页
针对多输出极限学习机(MELM)分类模型输入层权值和阈值随机选取导致的分类精度波动问题,提出一种基于改进花粉算法(CS-ACFPA)的极限学习机多分类模型(CS-ACFPA-MELM)。利用自适应算子和Tent策略优化花粉算法的寻优方式,构造一种基于代... 针对多输出极限学习机(MELM)分类模型输入层权值和阈值随机选取导致的分类精度波动问题,提出一种基于改进花粉算法(CS-ACFPA)的极限学习机多分类模型(CS-ACFPA-MELM)。利用自适应算子和Tent策略优化花粉算法的寻优方式,构造一种基于代价敏感的适应度函数,使花粉算法能够更好地匹配MELM模型的输出,最后使用改进的花粉算法和基于代价敏感的适应度函数优化极限学习机的输入权值和阈值,以提高MELM模型的的分类性能。通过对比实验验证了CS-ACFPA算法对MELM模型改进的有效性,并且体现了CS-ACFPA-MELM模型在大规模样本上的优势以及小样本上的适用性。 展开更多
关键词 分类模型 极限学习 花粉算法 代价敏感 混沌搜索
在线阅读 下载PDF
一种基于极限学习机融合模型的实时亚表面缺陷深度检测算法 被引量:1
18
作者 王章权 周莹 +1 位作者 周煊勇 刘半藤 《传感技术学报》 CAS CSCD 北大核心 2022年第10期1412-1417,共6页
为提高检测亚表面缺陷深度的速度与精度,提出了一种基于极限学习机融合模型的实时亚表面缺陷深度检测算法。首先,构造极限学习机模型将涡流传感器以及超声传感器探测数据转化为导体缺陷在不同深度的概率分布;然后,根据不同传感器采集特... 为提高检测亚表面缺陷深度的速度与精度,提出了一种基于极限学习机融合模型的实时亚表面缺陷深度检测算法。首先,构造极限学习机模型将涡流传感器以及超声传感器探测数据转化为导体缺陷在不同深度的概率分布;然后,根据不同传感器采集特点对概率分布进行动态赋权,并采用D-S融合模型计算缺陷深度的概率分布;最后,基于最大概率原则对未知缺陷深度的导体进行分类。实验结果表明,相比单传感器检测方法和传统D-S证据等权融合理论,所提出的检测方法具有更高的精确度和稳定性。 展开更多
关键词 无损检测 极限学习模型 动态赋权 D-S证据理论 最大隶属原则
在线阅读 下载PDF
改进粒子群-极限学习机模型在面板堆石坝运行期沉降预测中的应用 被引量:6
19
作者 燕乔 高名杨 +1 位作者 梁明浩 王硕 《水电能源科学》 北大核心 2021年第10期110-113,共4页
针对极限学习机(ELM)沉降预测模型中随机权值和阈值导致部分节点无效的问题,引入改进粒子群算法(IPSO)优化极限学习机的参数,构建基于改进粒子群-极限学习机算法的面板堆石坝运行期沉降预测模型,并将其应用于某完建的面板堆石坝运行期... 针对极限学习机(ELM)沉降预测模型中随机权值和阈值导致部分节点无效的问题,引入改进粒子群算法(IPSO)优化极限学习机的参数,构建基于改进粒子群-极限学习机算法的面板堆石坝运行期沉降预测模型,并将其应用于某完建的面板堆石坝运行期沉降预测中。结果表明,与未优化的极限学习机预测模型和统计回归预测模型的拟合预测结果相比,经改进粒子群算法优化后的极限学习机预测模型在测点上的拟合精度更高,且由于引入改进粒子群算法后,极限学习机在满足精度条件下所需预设的隐含层神经元数更少,这可极大地降低模型网络的复杂度,避免模型在训练中出现过拟合现象;三个模型中IPSO-ELM模型的泛化能力更好,预测结果更精确、稳定。 展开更多
关键词 面板堆石坝 改进粒子群-极限学习(IPSO-elm) 运行期 沉降预测模型
在线阅读 下载PDF
基于极限学习机(ELM)的视线落点估计方法
20
作者 朱博 张天侠 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第3期335-338,共4页
基于极限学习机(ELM)所具有的训练速度快、适合多分类的特点,提出一种新的单摄像机视线追踪系统视线落点估计方法.在初始标定阶段,将多视线参数作为ELM输入,将视线在屏幕上的落点区域作为输出,将非线性多项式作为激活函数,通过初始标定... 基于极限学习机(ELM)所具有的训练速度快、适合多分类的特点,提出一种新的单摄像机视线追踪系统视线落点估计方法.在初始标定阶段,将多视线参数作为ELM输入,将视线在屏幕上的落点区域作为输出,将非线性多项式作为激活函数,通过初始标定获取ELM训练数据,建立视线特征参数和视线屏幕落点之间的映射模型.实验结果表明,通过对不同角度分布的视线落点进行估计和改变隐层单元数量进行训练,基于ELM的视线落点估计方法无论视线落点精度还是稳定性均优于传统的非线性多项式拟合方法. 展开更多
关键词 视线追踪 极限学习 视线落点估计 映射模型 多项式模型
在线阅读 下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部