期刊文献+
共找到199篇文章
< 1 2 10 >
每页显示 20 50 100
基于因果正则化极限学习机的风电功率短期预测方法 被引量:7
1
作者 杨茂 张书天 王勃 《电力系统保护与控制》 EI CSCD 北大核心 2024年第11期127-136,共10页
随着风电并网比例的逐年提高,电力系统对风电功率预测的准确性和稳定性提出了更高要求。对于同一风电场而言,为了避免不同特征选择方法所选择的风电场特征子集不同,从因果关系的角度出发,提出了一种基于因果正则化极限学习机(causal reg... 随着风电并网比例的逐年提高,电力系统对风电功率预测的准确性和稳定性提出了更高要求。对于同一风电场而言,为了避免不同特征选择方法所选择的风电场特征子集不同,从因果关系的角度出发,提出了一种基于因果正则化极限学习机(causal regularized extreme learning machine, CRELM)的风电功率短期预测方法。首先将极限学习机(extreme learning machine, ELM)建模为结构因果模型(structural causal model, SCM),在此基础上计算隐藏层神经元与输出层神经元之间的平均因果效应向量。然后将该平均因果效应向量与输出层权重相结合构成因果正则化项,在最小化训练误差的同时最大化网络的因果关系,以进一步提升模型的预测准确性和预测稳定性。最后,以国内蒙西某风电场数据为例,与采用特征选择或不采用特征选择的预测模型相对比,验证了所提方法的有效性和适用性。 展开更多
关键词 特征选择 因果正则化 结构因果模型 平均因果效应向量 极限学习
在线阅读 下载PDF
煤自燃极限参数的支持向量机预测模型 被引量:25
2
作者 孟倩 王洪权 +1 位作者 王永胜 周延 《煤炭学报》 EI CAS CSCD 北大核心 2009年第11期1489-1493,共5页
建立了基于支持向量机(Support Vector Machine,SVM)的煤自燃极限参数预测模型;经过与多项式函数及Sigmoid核函数的对比,选用径向基函数作为SVM核函数;提出了一种SVM参数优化的变步长搜索方法,先在一个大区域根据训练样本均方差的值改... 建立了基于支持向量机(Support Vector Machine,SVM)的煤自燃极限参数预测模型;经过与多项式函数及Sigmoid核函数的对比,选用径向基函数作为SVM核函数;提出了一种SVM参数优化的变步长搜索方法,先在一个大区域根据训练样本均方差的值改变参数搜索步长,找到一个性能好的小区域,在这个小区域中应用网格搜索法找到最优参数,可提高参数搜索速度.实验表明,与人工神经网络模型相比,在样本有限的情况下,基于支持向量机的煤自燃极限参数预测模型预测精度更高、速度更快,说明支持向量机技术在煤自燃极限参数预测中具有实用价值. 展开更多
关键词 煤自燃极限参数 支持向量 人工神经网络 预测模型
在线阅读 下载PDF
极限学习机与支持向量机在储层渗透率预测中的对比研究 被引量:37
3
作者 潘华贤 程国建 蔡磊 《计算机工程与科学》 CSCD 北大核心 2010年第2期131-134,共4页
极限学习机ELM是一种简单易用、有效的单隐层前馈神经网络SLFNs学习算法。传统的神经网络学习算法(如BP算法)需要人为设置大量的网络训练参数,并且很容易产生局部最优解。极限学习机只需要设置网络的隐层节点个数,在算法执行过程中不需... 极限学习机ELM是一种简单易用、有效的单隐层前馈神经网络SLFNs学习算法。传统的神经网络学习算法(如BP算法)需要人为设置大量的网络训练参数,并且很容易产生局部最优解。极限学习机只需要设置网络的隐层节点个数,在算法执行过程中不需要调整网络的输入权值以及隐元的偏置,并且产生唯一的最优解,因此具有学习速度快且泛化性能好的优点。本文将极限学习机引入到储层渗透率的预测中,通过对比支持向量机,分析其在储层渗透率预测中的可行性和优势。实验结果表明,极限学习机与支持向量机有近似的预测精度,但在参数选择以及学习速度上极限学习机具有明显的优势。 展开更多
关键词 极限学习 前馈神经网络 渗透率 支持向量 预测模型
在线阅读 下载PDF
风电外送通道极限传输能力的自适应向量机估计 被引量:5
4
作者 邱高 刘俊勇 +2 位作者 刘友波 穆钢 刘挺坚 《电工技术学报》 EI CSCD 北大核心 2018年第14期3342-3352,共11页
风电随机性和间歇性导致基于典型方式计算的通道极限输电能力(TTC)有效性降低。提出一种TTC的自适应向量机估计方法,通过风电与负荷场景聚类形成代表性场景,采用重复潮流-二分法计算各场景下含暂稳约束的断面TTC值,经过最大信息系数与... 风电随机性和间歇性导致基于典型方式计算的通道极限输电能力(TTC)有效性降低。提出一种TTC的自适应向量机估计方法,通过风电与负荷场景聚类形成代表性场景,采用重复潮流-二分法计算各场景下含暂稳约束的断面TTC值,经过最大信息系数与基于非参互信息的无监督特征筛选后,利用基于网格搜索-遗传算法寻优的自适应支持向量机对TTC进行回归估计。算例验证表明,该方法具备较强的数据拟合能力和非线性泛化能力,在线计算结果精确,能够实现TTC快速在线估计。 展开更多
关键词 风电 极限传输能力 运行规则提取 自适应支持向量
在线阅读 下载PDF
单桩竖向极限承载力预测的支持向量机方法 被引量:6
5
作者 苏华 汪在芹 明峥嵘 《人民长江》 北大核心 2007年第1期46-47,共2页
由于影响单桩竖向极限承载力的因素很多且不稳定,因此如何合理地确定桩的承载力,充分发挥桩基的技术经济效益显得尤为重要。为了能合理地确定桩基础的承载力,充分发挥计算机强大的计算能力,减少桩基础设计的步骤。通过数据挖掘中的一个... 由于影响单桩竖向极限承载力的因素很多且不稳定,因此如何合理地确定桩的承载力,充分发挥桩基的技术经济效益显得尤为重要。为了能合理地确定桩基础的承载力,充分发挥计算机强大的计算能力,减少桩基础设计的步骤。通过数据挖掘中的一个新方法—支持向量回归算法,能较好地对单桩竖向极限承载力进行预测,支持向量回归算法是借助于最优化方法解决机器学习问题的新工具。结果表明这种方法可以作为单桩竖向极限承载力计算的一种参考。 展开更多
关键词 支持向量 预测 单桩竖向极限承载力
在线阅读 下载PDF
航天器单层板结构弹道极限的支持向量机预测模型 被引量:2
6
作者 张晓天 谌颖 贾光辉 《宇航学报》 EI CAS CSCD 北大核心 2014年第3期298-305,共8页
提出了一种基于非线性不可分支持向量机(SVM)方法的航天器单层板结构弹道极限预测模型。利用实验数据对SVM进行训练,建立穿透点和未穿透点的分隔面,进而预测新结构弹道极限特性。SVM的训练问题是以实验点分类正确性为约束,预测置信度最... 提出了一种基于非线性不可分支持向量机(SVM)方法的航天器单层板结构弹道极限预测模型。利用实验数据对SVM进行训练,建立穿透点和未穿透点的分隔面,进而预测新结构弹道极限特性。SVM的训练问题是以实验点分类正确性为约束,预测置信度最大化为目标的二次规划问题,用Lagrange对偶方法有效求解了该训练问题,并通过附加Lagrange乘子的上限约束处理不可分数据集。引入二次核函数将线性SVM推广到非线性,有效实现了实验点的分类。利用超高速碰撞实验数据对SVM弹道极限预测模型进行了验证,计算对比表明SVM方法有效预测了弹道极限,并且精度高于NASA JSC单层板弹道极限方程。对分离面方程分离变量,建立了基于SVM的弹道极限方程显式表达式。 展开更多
关键词 航天器 防护结构 弹道极限 支持向量
在线阅读 下载PDF
基于最小二乘支持向量机回归的单桩竖向极限承载力预测 被引量:1
7
作者 杨磊 徐洪钟 《南京工业大学学报(自然科学版)》 CAS 2007年第4期21-24,共4页
基于单桩载荷试验数据,采用最小二乘支持向量机(LSSVM)回归的方法,建立了单桩竖向极限承载力的预测模型.利用文献中桩的载荷试验数据来训练LSSVM模型,并确定了模型参数.研究结果表明,同常用的BP网络相比,LSSVM预测模型具有学习速度快、... 基于单桩载荷试验数据,采用最小二乘支持向量机(LSSVM)回归的方法,建立了单桩竖向极限承载力的预测模型.利用文献中桩的载荷试验数据来训练LSSVM模型,并确定了模型参数.研究结果表明,同常用的BP网络相比,LSSVM预测模型具有学习速度快、预测性能较好、选择参数少等优点,是一种有效的预测单桩极限承载力的方法. 展开更多
关键词 单桩 最小二乘支持向量 竖向极限承载力 预测模型
在线阅读 下载PDF
基于二次分解、LSTM-ELM和误差修正的空气质量指数预测模型 被引量:1
8
作者 周建国 秦远 周路明 《安全与环境学报》 北大核心 2025年第1期322-334,共13页
精准预测空气质量指数(Air Quality Index,AQI)对于制定有效的空气污染治理策略至关重要。为了进一步提升AQI的预测精度,提出了一种新的预测模型,并结合了二次分解(Secondary Decomposition,SD)、优化算法、双尺度预测和误差修正的方法... 精准预测空气质量指数(Air Quality Index,AQI)对于制定有效的空气污染治理策略至关重要。为了进一步提升AQI的预测精度,提出了一种新的预测模型,并结合了二次分解(Secondary Decomposition,SD)、优化算法、双尺度预测和误差修正的方法。首先,采用改良的自适应白噪声完全集合经验模态分解(Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,ICEEMDAN)和样本熵(Sample Entropy,SE)对原始AQI序列进行分解并重构,获得高频、中频和低频3个频率分量。其次,利用经过北方苍鹰算法(Northern Goshawk Optimization,NGO)优化的变分模态分解(Variational Mode Decomposition,VMD)对高频分量进行二次分解,进一步降低其复杂度。再次,引入向量加权平均算法(Weighed Mean of Vectors Algorithm,INFO)对长短期记忆网络(Long Short-Term Memory,LSTM)和极限学习机(Extreme Learning Machine,ELM)的关键参数进行优化,同时利用INFO-LSTM预测高频分量分解后的子序列,进而利用INFO-ELM分别预测中、低频分量,并将所得预测结果进行线性叠加。最后,利用NGO-VMD和INFO-ELM对误差序列进行分解和预测,并对初次预测结果进行修正,得到最终的AQI预测值。研究选取北京、上海和成都3个典型城市为例进行实证分析,并对比了7个对照试验,发现基于二次分解、LSTM-ELM和误差修正的模型具有最高的预测精度。该模型可为治理空气污染提供理论和技术上的帮助。 展开更多
关键词 环境工程学 空气质量指数预测 二次分解 长短期记忆网络 极限学习 向量加权平均算法 误差修正模型
在线阅读 下载PDF
基于深度极限学习机的危险源识别算法HIELM 被引量:4
9
作者 李诗瑶 周良 刘虎 《计算机科学》 CSCD 北大核心 2017年第5期89-94,共6页
危险源识别是民用航空管理的重要环节之一,危险源识别结果必须高度准确才能确保飞行的安全。为此,提出了一种基于深度极限学习机的危险源识别算法HIELM(Hazard Identification Algorithm Based on Extreme Learning Machine),设计了一... 危险源识别是民用航空管理的重要环节之一,危险源识别结果必须高度准确才能确保飞行的安全。为此,提出了一种基于深度极限学习机的危险源识别算法HIELM(Hazard Identification Algorithm Based on Extreme Learning Machine),设计了一种由多个深层栈式极限学习机(S-ELM)和一个单隐藏层极限学习机(ELM)构成的深层网络结构。算法中,多个深层S-ELM使用平行结构,各自可以拥有不同的隐藏结点个数,按照危险源领域分类接受危险源状态信息完成预学习,并结合识别特征改进网络输入权重的产生方式。在单隐藏层ELM中,深层ELM的预学习结果作为其输入,改进了反向传播算法,提高了网络识别的精确度。同时,分别训练各深层S-ELM,缓解了高维数据训练的内存压力和节点过多产生的过拟合现象。 展开更多
关键词 危险源识别 深度学习 极限学习(elm) 分类
在线阅读 下载PDF
基于改进PSO-ELM的坑湖水质预测与评价 被引量:1
10
作者 石秀峰 王进 +3 位作者 揣新 王绍平 罗长海 岳正波 《合肥工业大学学报(自然科学版)》 北大核心 2025年第2期145-150,共6页
采矿行业产生的尾矿水具有较高的金属离子和硫酸盐质量浓度,同时具有酸化的风险,对尾矿水水质的预测和评价有利于保障尾矿水资源循环利用和可持续发展。文章将线性原始数据通过滑动窗口处理转化为模型的输入矩阵,利用粒子群优化算法(par... 采矿行业产生的尾矿水具有较高的金属离子和硫酸盐质量浓度,同时具有酸化的风险,对尾矿水水质的预测和评价有利于保障尾矿水资源循环利用和可持续发展。文章将线性原始数据通过滑动窗口处理转化为模型的输入矩阵,利用粒子群优化算法(particle swarm optimization,PSO)对极限学习机(extreme learning machine,ELM)进行改进,提出一种基于PSO-ELM的水质预测模型,以安徽马鞍山某矿区坑湖为对象,使用不同网络模型对水质参数进行预测。结果表明,改进后的PSO-ELM模型较BP(back propagation)神经网络、传统ELM具有更高的预测精度,决定系数达到82%,均方误差仅为0.04,并且具有更快的计算和收敛速度。将训练集数据与预测数据相结合,采用Spearman秩相关系数法评价水质稳定性,结果表明pH值和主要无机盐离子质量浓度较为稳定,无明显变化趋势,满足生态和生产需求。 展开更多
关键词 水质监测 滑动窗口 粒子群优化算法(PSO) 极限学习(elm) 水质评价
在线阅读 下载PDF
基于极限学习机的变压器故障诊断方法研究 被引量:63
11
作者 苑津莎 张利伟 +1 位作者 王瑜 尚海昆 《电测与仪表》 北大核心 2013年第12期21-26,共6页
针对基于传统智能学习方法的变压器故障诊断存在训练速度慢、需调整的参数多及参数确定困难的问题,提出了基于极限学习机(Extreme Learning Machine,ELM)的变压器故障诊断方法。文中根据变压器故障的特点选取输入特征向量,分析了激活函... 针对基于传统智能学习方法的变压器故障诊断存在训练速度慢、需调整的参数多及参数确定困难的问题,提出了基于极限学习机(Extreme Learning Machine,ELM)的变压器故障诊断方法。文中根据变压器故障的特点选取输入特征向量,分析了激活函数、隐含层节点数目对诊断性能的影响,并与基于BP神经网络和SVM的诊断方法进行了对比。实验结果表明,文中提出的变压器故障诊断方法性能明显优于BP神经网络,与SVM的诊断正确率相当,需要预先设置的参数更少,训练速度更快,更加便于工程应用。 展开更多
关键词 变压器 故障诊断 极限学习 elm神经网络 激活函数
在线阅读 下载PDF
基于极限学习机的分类算法及在故障识别中的应用 被引量:23
12
作者 裘日辉 刘康玲 +1 位作者 谭海龙 梁军 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2016年第10期1965-1972,共8页
利用极限学习机(ELM)分类器的结构特点重新设计面向多分类任务的ELM分类器,提出基于ELM的优化分类算法One-Class-PCA-ELM.该算法的实现过程如下:对故障数据进行主元分析(PCA)处理,降低数据维数,去除噪声与冗余信息;将训练数据集按类分割... 利用极限学习机(ELM)分类器的结构特点重新设计面向多分类任务的ELM分类器,提出基于ELM的优化分类算法One-Class-PCA-ELM.该算法的实现过程如下:对故障数据进行主元分析(PCA)处理,降低数据维数,去除噪声与冗余信息;将训练数据集按类分割,建立各类对应的单分类模型,整合得到One-Class-PCA-ELM分类模型;将待分类数据输入One-Class-PCA-ELM分类模型,得到待分类数据的类标号,完成分类.仿真实验结果表明,该算法保持了极限学习机极快的训练速度,具有较高的分类准确率及较理想的分类稳定性. 展开更多
关键词 极限学习(elm) 单分类 分类算法 故障识别
在线阅读 下载PDF
基于变量选择和核极限学习机的交通事件检测 被引量:15
13
作者 商强 林赐云 +2 位作者 杨兆升 邴其春 邢茹茹 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2017年第7期1339-1346,1445,共9页
为了进一步提高交通事件检测的效果,提出基于变量选择和核极限学习机(KELM)的自动事件检测(AID)算法.根据交通事件上、下游交通流参数的变化特点,构建较全面的交通事件检测初始变量集.采用随机森林—递归特征消除(RF-RFE)算法,从中选择... 为了进一步提高交通事件检测的效果,提出基于变量选择和核极限学习机(KELM)的自动事件检测(AID)算法.根据交通事件上、下游交通流参数的变化特点,构建较全面的交通事件检测初始变量集.采用随机森林—递归特征消除(RF-RFE)算法,从中选择重要变量.以重要变量作为输入,训练KELM并通过万有引力搜索算法(GSA)优化参数.使用美国I-880数据库,对AID算法的效果进行验证和对比分析.因为数据库中的事件样本数远少于非事件样本数,采用SMOTE平衡两类样本.结果表明,使用重要变量能够提高交通事件的检测效果,KELM的检测效果优于反向传播神经网络(BPNN)和支持向量机(SVM). 展开更多
关键词 交通工程 交通事件检测 变量选择 森林 极限学习(elm)
在线阅读 下载PDF
基于极限学习机的GF-2影像分类 被引量:14
14
作者 王明常 张馨月 +3 位作者 张旭晴 王凤艳 牛雪峰 王红 《吉林大学学报(地球科学版)》 EI CAS CSCD 北大核心 2018年第2期373-378,共6页
遥感图像分类是提取图像有效信息过程中重要的一部分,为了探寻最优的分类方法,许多机器学习算法逐步应用于遥感分类中。极限学习机(extreme learning machine,ELM)以其高效、快速和良好的泛化性能在模式识别领域得到广泛应用。本文采用... 遥感图像分类是提取图像有效信息过程中重要的一部分,为了探寻最优的分类方法,许多机器学习算法逐步应用于遥感分类中。极限学习机(extreme learning machine,ELM)以其高效、快速和良好的泛化性能在模式识别领域得到广泛应用。本文采用训练速度快、运算量小的极限学习机算法与支持向量机(support vector machines,SVM)算法和最大似然法进行分类对比,对高分辨率遥感图像进行分类,分析极限学习机算法对于遥感图像分类的准确度等性能。选取吉林省长春市部分区域的GF-2遥感数据,将融合后的影像设置为原始数据,利用3种方法进行分类。研究结果表明,极限学习机算法分类图像总体分类精度达到85%以上,kappa系数达到0.718,与其他分类方法相比分类准确度较高,且极限学习机运行时间比支持向量机运行时间约短2 480s,约为支持向量机运行时间的1/8,因此具有良好的性能和实用价值。 展开更多
关键词 极限学习 遥感图像分类 GF-2影像 监督分类 支持向量
在线阅读 下载PDF
基于改进极限学习机的短期电力负荷预测方法 被引量:54
15
作者 毛力 王运涛 +1 位作者 刘兴阳 李朝锋 《电力系统保护与控制》 EI CSCD 北大核心 2012年第20期140-144,共5页
为了提高电力系统短期负荷预测精度,提出一种基于改进极限学习机(MELM)的短期电力负荷预测模型。引入基于结构风险最小化理论,并结合最小二乘向量机回归学习方法,以克服传统极限学习机(ELM)在短期负荷预测中存在的过拟合问题。某地区用... 为了提高电力系统短期负荷预测精度,提出一种基于改进极限学习机(MELM)的短期电力负荷预测模型。引入基于结构风险最小化理论,并结合最小二乘向量机回归学习方法,以克服传统极限学习机(ELM)在短期负荷预测中存在的过拟合问题。某地区用电负荷预测结果表明,改进模型的泛化性与预测精度均优于传统ELM和OS-ELM模型,可为短期电力负荷预测提供有效依据,具有一定的实用性。 展开更多
关键词 短期负荷预测 极限学习 结构风险 最小二乘支持向量
在线阅读 下载PDF
基于极限学习机的采煤机功率预测算法研究 被引量:14
16
作者 丁华 常琦 +1 位作者 杨兆建 刘建成 《煤炭学报》 EI CAS CSCD 北大核心 2016年第3期794-800,共7页
为减少对领域专家的过分依赖,实现企业专家经验知识的继承,面向采煤机方案设计中总体技术参数的确定过程,结合采煤机条件属性与决策属性间的映射关系,提出了基于极限学习机的采煤机功率预测模型。采用遗传算法选定最佳隐层神经元个数,... 为减少对领域专家的过分依赖,实现企业专家经验知识的继承,面向采煤机方案设计中总体技术参数的确定过程,结合采煤机条件属性与决策属性间的映射关系,提出了基于极限学习机的采煤机功率预测模型。采用遗传算法选定最佳隐层神经元个数,利用递进方式比选确定激励函数,随机产生输入权值及隐元偏置,由此计算隐层节点输出矩阵、隐层与输出层连接权重,进而完成建模与优化。模型可根据用户输入的不同原始设计条件输出采煤机功率的预测值。选用某煤机企业的实例数据进行算例分析,将其与基于支持向量机回归预测模型进行对比,实验结果表明,ELM模型可实现600 ms内完成单次功率预测,预测值与真实值平均相对误差在2.5%以内。其预测精度优于SVM模型,且在学习速度方面优势明显,推理效率显著提高。 展开更多
关键词 采煤 功率预测 极限学习 支持向量 模型推理
在线阅读 下载PDF
基于流形正则化极限学习机的语种识别系统 被引量:12
17
作者 徐嘉明 张卫强 +2 位作者 杨登舟 刘加 夏善红 《自动化学报》 EI CSCD 北大核心 2015年第9期1680-1685,共6页
支持向量机(Support vector machine,SVM)在语种识别中已经起到了重要的作用.近些年来,极限学习机(Extreme learning machine,ELM)在很多领域取得了成功的应用.相比于SVM,ELM最大的优点在于极易实现、训练速度快,而且通常可以取得与SVM... 支持向量机(Support vector machine,SVM)在语种识别中已经起到了重要的作用.近些年来,极限学习机(Extreme learning machine,ELM)在很多领域取得了成功的应用.相比于SVM,ELM最大的优点在于极易实现、训练速度快,而且通常可以取得与SVM相近甚至优于SVM的识别性能.鉴于ELM这些优异的特点,本文将ELM引入到语种识别中,并针对ELM由于随机初始化模型参数所带来的潜在问题,提出了流形正则化极限学习机(Manifold regularized extreme learning machine,MRELM)算法.实验结果表明,在高斯超矢量(Gaussian supervector,GSV)特征空间上,相对于SVM基线系统,该算法对30秒语音的识别性能有明显的提升.同时该算法也可以成功地应用到i-vector特征空间中,取得与当前主流的打分算法相近的识别性能. 展开更多
关键词 语种识别 极限学习 流形学习 支持向量
在线阅读 下载PDF
极限学习机在岩性识别中的应用 被引量:34
18
作者 蔡磊 程国建 潘华贤 《计算机工程与设计》 CSCD 北大核心 2010年第9期2010-2012,共3页
基于传统支持向量机(SVM)训练速度慢、参数选择难等问题,提出了基于极限学习机(ELM)的岩性识别。该算法是一种新的单隐层前馈神经网络(SLFNs)学习算法,不但可以简化参数选择过程,而且可以提高网络的训练速度。在确定了最优参数的基础上... 基于传统支持向量机(SVM)训练速度慢、参数选择难等问题,提出了基于极限学习机(ELM)的岩性识别。该算法是一种新的单隐层前馈神经网络(SLFNs)学习算法,不但可以简化参数选择过程,而且可以提高网络的训练速度。在确定了最优参数的基础上,建立了ELM的岩性分类模型,并且将ELM的分类结果与SVM进行对比。实验结果表明,ELM以较少的神经元个数获得与SVM相当的分类正确率,并且ELM参数选择比SVM简便,有效降低了训练速度,表明了ELM应用于岩性识别的可行性和算法的有效性。 展开更多
关键词 器学习 极限学习 前馈神经网络 岩性识别 支持向量
在线阅读 下载PDF
基于P300和极限学习机的脑电测谎研究 被引量:7
19
作者 高军峰 张文佳 +3 位作者 杨勇 胡佳佳 陶春毅 官金安 《电子科技大学学报》 EI CAS CSCD 北大核心 2014年第2期301-305,共5页
极限学习机基于一种典型的单隐层前馈神经网络(SLFNs),其有效性在模式识别很多领域得到证实。该文针对当前的测谎方法的准确率不够高及训练时间较长的缺点,将ELM算法应用到测谎研究领域,作为分类器,对说谎者和诚实者的两类脑电信号进行... 极限学习机基于一种典型的单隐层前馈神经网络(SLFNs),其有效性在模式识别很多领域得到证实。该文针对当前的测谎方法的准确率不够高及训练时间较长的缺点,将ELM算法应用到测谎研究领域,作为分类器,对说谎者和诚实者的两类脑电信号进行分类识别,并将实验结果和三类典型的分类器:支持向量机(SVM)、人工神经网络(ANN)和线性分类器(FDA)的分类结果进行比较。实验结果表明,该方法不仅获得最高的训练和测试准确率,而且训练时间也大为缩短,证明了该方法的测谎有效性。 展开更多
关键词 脑电 极限学习 测谎 神经网络 P300 支持向量
在线阅读 下载PDF
运用在线贯序极限学习机的故障诊断方法 被引量:10
20
作者 尹刚 张英堂 +1 位作者 李志宁 程利军 《振动.测试与诊断》 EI CSCD 北大核心 2013年第2期325-329,345,共5页
针对传统的前馈神经网络学习算法泛化能力不高、训练速度慢、易出现局部最优解及无法处理随时间不断变化的信息流等问题,提出了基于在线贯序极限学习机的快速故障诊断方法。针对旋转机械故障复杂、样本少的特点,将测试过程中得到的预测... 针对传统的前馈神经网络学习算法泛化能力不高、训练速度慢、易出现局部最优解及无法处理随时间不断变化的信息流等问题,提出了基于在线贯序极限学习机的快速故障诊断方法。针对旋转机械故障复杂、样本少的特点,将测试过程中得到的预测数据加入训练样本,作为下一次预测的已知信息,建立在线贯序极限学习机分类模型,从而在最大程度上提高故障诊断的精度。试验结果表明,在线贯序极限学习机在故障分类准确率与支持向量机相近的条件下,参数选择简单且学习速度提高近200倍。 展开更多
关键词 极限学习 在线神经网络 旋转 故障诊断 支持向量
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部