随着面向高比例可再生能源新型电力系统的转型,系统运行特性日趋复杂。暂态功角稳定(transientangle stability,TAS)与暂态电压稳定(transient voltage stability,TVS)问题相互耦合且频发,为系统安全稳定评估带来严峻挑战。研究首先采...随着面向高比例可再生能源新型电力系统的转型,系统运行特性日趋复杂。暂态功角稳定(transientangle stability,TAS)与暂态电压稳定(transient voltage stability,TVS)问题相互耦合且频发,为系统安全稳定评估带来严峻挑战。研究首先采用变步长二分法通过调用PSASP从时间维度上构建了暂态电压与暂态功角的稳定边界。研究了不同故障位置、感应电动机占比、负荷率对稳定边界的影响并依托边界确定主导失稳模式。其次提出一种基于注意力机制与一维卷积神经网络融合的电力系统功角稳定及电压稳定裕度评估的新方法。该方法直接面向测量数据,将节点稳态与暂态运行的电压幅值、有功功率、无功功率数据作为输入特征,节省了数据处理时间。通过一维卷积神经网络构建输入特征与极限切除时间的映射,利用注意力机制进一步提高了模型预测效果。通过新英格兰IEEE39节点系统进行分析验证,结果表明该方法可以实现暂态安全裕度的快速评估且具有较高的预测精度。展开更多
文摘随着面向高比例可再生能源新型电力系统的转型,系统运行特性日趋复杂。暂态功角稳定(transientangle stability,TAS)与暂态电压稳定(transient voltage stability,TVS)问题相互耦合且频发,为系统安全稳定评估带来严峻挑战。研究首先采用变步长二分法通过调用PSASP从时间维度上构建了暂态电压与暂态功角的稳定边界。研究了不同故障位置、感应电动机占比、负荷率对稳定边界的影响并依托边界确定主导失稳模式。其次提出一种基于注意力机制与一维卷积神经网络融合的电力系统功角稳定及电压稳定裕度评估的新方法。该方法直接面向测量数据,将节点稳态与暂态运行的电压幅值、有功功率、无功功率数据作为输入特征,节省了数据处理时间。通过一维卷积神经网络构建输入特征与极限切除时间的映射,利用注意力机制进一步提高了模型预测效果。通过新英格兰IEEE39节点系统进行分析验证,结果表明该方法可以实现暂态安全裕度的快速评估且具有较高的预测精度。