期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于模态分解及GRU-XGBoost短期电力负荷预测
被引量:
14
1
作者
冉启武
张宇航
《电网与清洁能源》
CSCD
北大核心
2024年第4期18-27,34,共11页
精确的短期电力负荷预测能有效提高电力系统运营水平。针对电力负荷数据受多种因素影响,波动性和随机性强等问题,提出了一种基于模态分解及混合模型的负荷预测方法。首先,采用主成分分析法(principal component analysis,PCA)对负荷特...
精确的短期电力负荷预测能有效提高电力系统运营水平。针对电力负荷数据受多种因素影响,波动性和随机性强等问题,提出了一种基于模态分解及混合模型的负荷预测方法。首先,采用主成分分析法(principal component analysis,PCA)对负荷特征向量进行处理,去掉冗余信息,再用完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)将历史负荷分解为简化的几个子序列;其次,选择引入样本熵(sample entropy,SE)来计算子序列熵值,将相近的子序列重构得到随机、细节、低频和趋势分量后选用不同结构门控循环单元(gate recurrent unit,GRU)对不同分量类型进行预测,再使用极致梯度提升模型(extreme gradient boosting,XGBoost)对各分量残差进行拟合,各重组序列的预测值为GRU预测值与XBGoost拟合值之和,重组各序列得到最终预测值。选取3年时电力负荷数据进行实验,结果表明,所提模型的均方根误差(root mean square error,RMSE)、平均绝对百分比误差(mean absolutepercentage error,MAPE)和平均绝对误差(mean absolute error,MAE)分别为370.676 MW、99.07%和246.89 MW,与单一模型和混合模型相比,实现了评价指标的明显减少。
展开更多
关键词
负荷预测
主成分分析
CEEMDAN
样本熵
门控循环单元
极致梯度提升模型
在线阅读
下载PDF
职称材料
题名
基于模态分解及GRU-XGBoost短期电力负荷预测
被引量:
14
1
作者
冉启武
张宇航
机构
陕西理工大学电气工程学院
出处
《电网与清洁能源》
CSCD
北大核心
2024年第4期18-27,34,共11页
基金
陕西省自然科学基础研究计划(2023-JC-YB-442)。
文摘
精确的短期电力负荷预测能有效提高电力系统运营水平。针对电力负荷数据受多种因素影响,波动性和随机性强等问题,提出了一种基于模态分解及混合模型的负荷预测方法。首先,采用主成分分析法(principal component analysis,PCA)对负荷特征向量进行处理,去掉冗余信息,再用完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)将历史负荷分解为简化的几个子序列;其次,选择引入样本熵(sample entropy,SE)来计算子序列熵值,将相近的子序列重构得到随机、细节、低频和趋势分量后选用不同结构门控循环单元(gate recurrent unit,GRU)对不同分量类型进行预测,再使用极致梯度提升模型(extreme gradient boosting,XGBoost)对各分量残差进行拟合,各重组序列的预测值为GRU预测值与XBGoost拟合值之和,重组各序列得到最终预测值。选取3年时电力负荷数据进行实验,结果表明,所提模型的均方根误差(root mean square error,RMSE)、平均绝对百分比误差(mean absolutepercentage error,MAPE)和平均绝对误差(mean absolute error,MAE)分别为370.676 MW、99.07%和246.89 MW,与单一模型和混合模型相比,实现了评价指标的明显减少。
关键词
负荷预测
主成分分析
CEEMDAN
样本熵
门控循环单元
极致梯度提升模型
Keywords
load forecasting
principal component analysis
CEEMDAN
sample entropy
gate control loop unit
extreme gradient enhancement model
分类号
TM714 [电气工程—电力系统及自动化]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于模态分解及GRU-XGBoost短期电力负荷预测
冉启武
张宇航
《电网与清洁能源》
CSCD
北大核心
2024
14
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部